CC3100\CC3200 SimpleLink™ Wi-Fi® Network
Processor Subsystem

Programmer's Guide

I3 TExXAs

INSTRUMENTS

Literature Number: SWRU368
June 2014



I3 TEXAS
INSTRUMENTS

Contents

1 L@ Y= YT PP 9
1.1 D T0 Yo 01 1T o Yol = 10

1.2 HOSE DIIVEN SW CONCEPES 1t tuutttuaetasesasesassssassassssaesaas e sa st as s sa s s s e s s s e aa s e s a et s e e saansaaesraneannes 10

1.3 Common Terminology and REfEIENCES ....uuiiii i e s s s s s ranr e s aanns 11

2 Writing a Simple Networking APPliCation ..ot 12
2.1 L YT 1= S 13

b2 I R = T T (o e T 4 ][ 2N o T [ S 13

3 (DY Aot 1 A =L 2= 11 o] o PP 18
(DAY ot I OfoT a1 Te [V T = L0 1 PP 21

4.1 L YT 1= S 22

4.2 DTt T =T 1] (= P 22

4.3 BT N B o = 10 0= (=T £ 22

0 A Yo 7= Y g - o 23

4.4 =TT S == = 1 0 T=] (] 23

45 Internet and Networking ServiCes Parameters ... eiriiee i st raire s ssaasssssannssssaannsesns 23

4.6 Power-Management ParameterS ... sssrtreeeisiiiisiiisssssssesreesssassssssssssssrnsreessssiissssssssnssnnnes 23

G0t R 0 11 g o o 23

G 2 AN LY - T g Tt o 24

4.7 S0t LT =T = 101 (=] 24

0 R ST o7 T g T T 24

5 RIAT AN NN I o o1 =T f o1 o PP 25
5.1 Y =T aTU = @ o) T T ox 1) o 26

T4 000 P 26

LT O ] = P 26

5.2 (0] g 0 T=Twd 10 o IO £ o T 2 1] 1 1= 26

5.3 (0] o 0 1= T3 1o o I =0 T 1= 26

5.4 Connection Related ASYNC EVENTS ...uuuueteiiiteiraitearaiaes s iae s sraas st saase s saaana s ssanressanresaannnns 27

541 WLAN EVENES 1utiitiittiittstitssae s ee s s ss s s s s st e s s et e e s a st s e s s e s s e e s n e s s n s sannssnnnnns 27

LS N 1= Y0 2 Y= o S 27

6 Yo o] 4= PP 28
6.1 L0 YT 1= 29

500 000 I 1 PP 29

G700 072 1 | P 29

6.2 Y0 1ot 2= A O] = o4 1o T 01 29

6.3 I3 o o T g 1= Tox 1 o TN o P 30

LT 20 R @ 1= o1 S o =S 30

LT BT YT s {0 [ 31

6.4 L] = o a1 s 1=t 1o ) o N 01 S 32

L R 1= o1 S o [ S 32

LT YT s {0 [ 33

6.5 L5011 1C=] A 10 33

6.5.1 Blocking versus NONBIOCKING .uuiueirssiistiiisiiite i s r s aanens 33

B.5.2  SECUINE SOCKELS .. uutttiatttisisteias sttt s ts et s e s s s s e et s s r et s s s e s s s s r s ssannssaaannrsannns 34

6.6 SimpleLink SUpPOrted SOCKEE AP . .....uiiieeiii i st r s r e raaeaanens 34

2 Contents SWRU368—-June 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
7 DeViCe HIDErNate ... o 36
8 L 0 XY= o o 1o Yo R PP 37
8.1 (0713 o o1 T 38
S 0 0 R 4= 1 (@0 o 38
S0 2 A /T Yo [ S 39
00 TR T LT S 41
9 Y=o U1 1 Y/ PP 44
9.1 WWLAN SECUIEY 1ttetinntessenteessaneessasnnessaanneesaasnnessannessaanneessannnesssnnneesssnnnessssnneesssnneesssnnness 45
LS 0 R =Y o) o - | S 45
LS O e 01 (=T o] 1 = 45
9.2 S =T o] B =T RS T o3 (= 47
LS R € 1= g 1= = T D= o ) oo 47
LS 2 o [0 1Y (0 U LS 47
9.2.3 EXample Of USING the SSOL viiiiiuiiiiiiiie i saitessaanre s saannessaannessaannnessaannesssanneessnnnnensnn 49
9.2.4 Supported Cryptographic AlgOrithms .....uueereeii i e 50
9.3 1 LTS Ay (= 0 S T o U 1/ 50
10 y N e /T Yo = TR PP 51
O T R €T =T o I T~ od ] o o] 52
10.2  Setting AP MOGE — AP 1. uuiitiiiii s e 52
10.3  WLAN Parameters Configuration — AP ... ...eeiiiieeeiiiiiesisise s sasse s s ssaanrsssaannssannns 52
10.4  WLAN Parameters QUETY — APl .. uueeiiiieiii i s r s sr s a s rr e aanenraaes 53
ORI Y o N [= AT 5 S @] o U T = 11T 54
10.6 DHCP Server CoNfIQUIAtION. ... e s usussessassessssssessastessaiseesaaasressaannssssaanssssannssssssnestsannnsssannns 54
10.7  Setting DEVICE URN .. uuuutiteiutieerastss s sassrase e s e s st s s s s st s aa e e s a e sa s e s n st s s s aa e sann s saneannns 55
10.8  Asynchronous Events Sent 10 the HOSE .. ... .eeiiiiii it e e e s s s e e s s nnr e s ananne e aanns 55
0RO b T 4101 0T [ 56
11 P BT 10 P I (P 2P 1ttt it 59
0 I R €7 =T =T o I T~ o ] o (o 60
B T o T 60
O O VAV 0 =T A2 AV T = Vo [ S 60
11.1.3 Support and Abilities of Wi-Fi DireCt in CC3L00 ..uuviuueiineirnninnsesinsrineriseisissisrsansesnsaannens 60
5 0 O T 03 0 LN 60
11.2  P2P APIS and CoONfigUIatioN . .uueusssssssseseessssneesssanseessasnnessasnneessssnnsssssnnessssnnnessssnnessssnneessnnnns 61
11.2.1 Configuring P2P Global ParameterS.....uueeieeeireeritirteiissisies i i sasssisrsanssaneias 61
11.2.2 Configuring P2P PoOlICY .ttt it r e s s s s s ae s saa s e s saanae st sann e s sannnneean 62
11.2.3 Configuring P2P Profile Connection POlCY ...vuiiieiiiiiieiiiiesssinessaainesssassnessannnesssnnnnesins 63
11.2.4 Discovering REMOE P2P PeeIS...uuiuuiiiiiiiieiiirie i sarenas 64
5 02 S N\ =T o] (=0 T/ =1 oo S 64
11.2.6  Manual P2P CONNECHON .uuuueiutisistrsererssass st sassase s sase e e raerassnnernesas 65
11.2.7 Manual P2P DiSCONNECHON 1.uuuuetistssseistesserasssssssastssse e s e sias s s rassaaessanrsans 66
O C T 2 e (o)1 66
11.2.9 RemMOoVING P2P ProfilleS .uiiiiiiiiiiisiiii i s e i seaaneessaannessaannnessannnesssannnessannnnnsnnn 66
I R B ] e @70 1 1= ox [0 T =T 66
11.4 Use Cases and ConfigUration ......c..eeeiiieeeiiiiiesiiiseiriate s saaasssssanesssaanssssaannssssannnssaaannsssannns 67
11.4.1 Case 1 — Nailed P2P Client Low-Power Profile ........cooviiiiiiiiiiiiiiiiininen e 67
11.4.2 Case 2 — Mobile Client Low-Power Profile........ooeviieiiiiiiiiiiii i 67
11.4.3 Case 3 — Nailed Center Plugged-in Profile ... e e e 68
11.4.4 Case 4 — Mobile Center Profile. ... e 68
11.4.5 Case 5 — Mobile General-Purpose Profile ......uvieeiiiiiiiiiiiiii i e 68
BTS00 o T [ 69
12 I T T 71
2 R © 1Y o T 72
SWRU368—-June 2014 Contents 3

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
12.2  HTTP GET PrOCESSING «uuuttuuteiuseiuterssirsessstsasts st taas sttt s tatssasstastsasssannssnnssnnes 73
0t © 1= - 73
12.2.2 Default Web Page ...t s s 73
12.2.3  SIMPIELINK GET TOKENS .1ttt s s saaas s sas s ss s s s san s raaeaanerans 73
12.2.4 User-Defined TOKENS ...ttt r e s et a e e s sr s e s s sann e s saann e s sannnneaannn 73
12.2.5 HTML Sample Code with Dynamic HTML CONtENt....iuueriiiiieiiiieisiies s ssiae s isanneess 74
12.3  HTTP POST PrOCESSING «utuuteiuuttunttnttsusesassrse ettt tatssiss et taisssannssnnsrareisnns 74
D F00 I © 1= - 74
12.3.2  SIMPIELinK POST TOKENS ... uuuttiiiitieeiiieteiraitre s st ss e s saaaa e s tsase st saannessaannnensas 74
12.3.3  SIMPIELINK POST ACHONS .1 uutiuttisttseeisteste s sss st taas s saasssiassarsrassaaeasanrrans 74
12.3.4 SIMPIELINK POST ACHONS 111 uutiustisttrseiistssserasssss s saat et ssass e rasesansesanrrans 74
12.3.5 User-Defined TOKENS ...uuiiieieiiiiieteiiiit e ss s s st a e s s aas et saaase s ssannn s s sannnnennns 75
12.3.6 RedireCt after POST .uuitiiittiiiriii et e s s s r s s r e eraas 75
12.3.7 HTML Sample Code with POST and Dynamic HTML CONENE ....vvvuviiiniiiinniisiiniseiinerineianens 75
D 1= g F= U Y= o =TT 76
T o T (ot e Y o T 1= o o o 76
12.6  ACCESSING the WD Page ..o s e e s r e s e s r e raans 76
12.6.1 SimpleLink in Station MO .....cuiieieiiiieiiii i s s e rs e s s s saanrreaas 76
12.6.2 SIMPIELINK iN AP MOOE ... u ettt s s s s s s e s raa e aan e anrrans 77
12.7  HTTP Authentication ChECK ...t e s e e s s s aer e s s ann e s sannnaeraannns 77
12.8 Handling HTTP Events in Host Using the SImpleLink DIiVer.....cccvvviiriiiiiiiiiii i s ssnnnesas 77
12.9 SimpleLink Driver Interface the HTTP WeED SerVer....cuuiiiiiiiiiiiiiiiiii i i ssias s snassaneens 79
12.9.1 Enable or DiSable HT TP SeIVer. . ..ttt it saa e s s aae e sananns s saannnssaannnenann 79
12.9.2 Configure HTTP POrt NUMDEI ..t r s s s s ian s s s nne e aans 79
12.9.3 Enable or Disable Authentication CheCK ........viiiiiiiiiiiiii i 80
12.9.4 Set or Get Authentication Name, Password, and Realm ......cviiiiiiiiiiiiisiiiiiir e errnnnnienannss 80
12.9.5 Set or Get DOMAIN NAME 1..uuuiiiiiiieei it rr e ssa e saaras st asaae s tsaan st saannessaannnensns 81
12.9.6 Set Or Gt URN NaIME .. uciiiieteiiiisteeirisesraa s s arse e aaa e rs s s ras e s raaannennas 82
12.9.7 Enable or Disable ROM WED Pages ACCESS . .uuuuuiriiiieteiiiintesaaineessannsessaannessaannessaannnesss 82
12.10 SimpleLink Predefin@d TOKENS ... .uuueiiieiiiie s s s s s s s s s ss e s s aanne s saananersannns 83
2 0 5 R o I 7= Y11= 83
12.10.2 POST ValUBS .t uutintiutintitirseat it sssaseaas e ss s asaas s s s s e st s s s s s aa s sas st sassaanansnnanns 87
70 0 T =@ 1S I Yod 1oL 90
13 L0101 T PP 91
R 200 R © 1= o T 92
13.2  Services — HOW t0 FINA ThEM ..t s s s s s s e s s s an e s ssanan e naanns 92
R TRC TS = 1y A T To B o] o N 3 15 1 T 95
13.4  Typical Operation MEthOUS .. .uuiueeisiiieii i e e s s s s s s a e e e aanerans 95
13.4.1 Find Service RRs (Parameters) — By ONe-Shot QUENY .....uviiieetsiriintsiriieressiinrsssainnssaaannness 95
13.4.2 Find Service RRs (Parameters) — By ContinUOUS QUETY ..uveiiiireesrennneessanneesssnnnresssnnresssnnness 95
IR J0 e T =T 11 (=] G =T o 95
R 20T = T 1= A 95
13.5.1 APl — Get HOSt DY SEIVICE 1uuitiiiiiet it s eite s s i e s eaaae e s saasneesaaannessaanneessannnessannnnernnn 95
R TR T S o B 1) A= o = N1 S 98
13.5.3 APl — REQISIEI SOIVICE . uiiittti it it tr it ra e sr it e ssa e e s s s aa e s taaan e s saannesssannnnrinn 103
13.5.4 APl — UNIEQISIEr SOIVICE tiuuuutetiiintestsattessaantesssannressaannessasnneesassnnessssnnessssnnnesssnnnensnn 104
13.5.5 API — Set Masking RECEIVE SEIVICES ..uuuuiiiuiiiiiriiiisiiie i s aaneens 105
13.5.6 APl — Set CONtINUOUS QUETY ..uiuuuuteiiaasessaatesiaaassesraassssaanssessannnesaaannsssaannnssssnnnnsss 107
13.5.7 API — Set Timing Parameters for AQVErtiSING «..uuveeeeriiieeeriaiessiaseessannressssnneessannrersannnees 107
13.5.8 APl — Gt EVENE MASK .ruiniiiiiiiieeieattessaaneessaane s ssaan e e sssanne s ananne s saannnessannnnssaannnersnn 108
13.5.9 API — Get CONtINUOUS QUETY . .uuuiuuutseinssesiaatssssaasssssaaanessaannssssassnsssasnnestsansnsssasnsnsins 109
13.5.10 API — Get Timing Parameters for AQVErtiSING «...ueeeereieeeiiiieesiainesssaneessannressaannnereannnes 109
14 Serial Flash File SyStem .......cooiiiiiiiiiiii 111
4 Contents SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
o R © 1Y o T 112
I 1 1T B o 11 oY= To = Vg o B =T T N 112
14.3  File Download, OPen fOr VWt .. uuusseiisisse s iiates st s s e ssaiae et ssaaae s saaan e s ssannesssannnnssns 112
I 1 @ =T g I o g (=T o 113
ST o U [ £ =BV S1 (=T 4 1= 113
I T o 43 41 @ == U1 T o N =T 113
S T T o U | 132 Y =T o 113
0 T 1o 1= o1 113
e TS T = L[ 114
IO T @ o 1T g 0] g 1 L= O == o 114
It I O @ o L= =T 2o = 115
15 G = PP 116
T R O 1T 117
LT B =1 - 11 = I 0T o ] 1o o 117
L TR0 T b 41 ][ 117
LT A O Y- 1 o [ I (= 119
LT T Ot 11 Y P 119
15.5.1 €008 EXAMPIE .uuiinniiiiiitiiiit e st s sr e s s s s s s s e st aa e st saaa et s ana e s s s nr e a e aaan 119
16 L= L ST oAV 1V o Yo = PN 122
L0 A €T =T =TI T o ] o 1o 123
T o o TV (T U] A 123
16.3  Sending and RECEIVING .uuuuiuuuteiiiiuttetiiatesiraste st s saans s asassesssaaassstaassnsssassnesssannnsssns 124
16.4  Changing SOCKEt PrOPEIIES. . uuuuutiuteiseiaeeriat st s st a s s san e ts s e s r s e e raneans 124
BGRR[0 (=T g g F= U = Vo =] 1= g =T (o N 125
16.6  Transmitting CW (Carrier-WaVE) ....uuueiiiusseiriutesiaiastessiiansssaanressasessasisssstaasnssssannsssannnsssns 125
16.7 Connection Policies and TranSCeIVEr MO ... ..uiueeiiutiiieiirte s ria e e 125
16.8 Notes about Receiving and TranSMItliNG ... ...eeoeeerrii i raaie e saaare s saanre s saanrassraanresaaanneeans 125
G702 T80 T =T o7 =1V T 125
G T U 5 1 - 126
L T R 1 1T 126
G700 0 T 10 0 1111 = 128
17 OS] - 129
0 R €T =T =TI 1= o ] oo 130
7 o 0T (TN ] 130
17.3 Notes about Receiving and TranSmMItling ... .ueeeeeeeeereiineessainnessesnnessasneessannnesraanneesesnnnessesnneeenns 131
N U 5 1 131
RS I T T 133
R 00 O 5 = o 134
R 0 1Y 136
R 20 TS Tox -] 139
. = 7 o] o 141
RS 78 T N1 (o 142
R 2N T o TS =T o 143
19 ASYNCNIONOUS EVENTS ...ttt ittt ettt e ettt et e eea et e et e e e tn e e eeeaeananansn 145
S R T 146
T N[ T o 147
I TR TS o -] 148
S I T ot 148
A [ (o B D RV 2= g N ol a1 = To3 (U | = PP PP 149
Al L YT 1= 149
A.1.1 CC3100 Host Driver - Platform Independent Part ........ccueiviiiiiiiiiiiiiiiiii i snineens 150
A.1.2 CC3100 Host Driver - Platform Dependent Part.......c.uvveevvreiieinieriiiisiinsnsiannesanns 150
SWRU368—-June 2014 Contents 5

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
A.1.3 CC3100 Driver CONfIgUIALION. ... ue e rseieseerst e sss s s ssessas s sats s sar s s s ssasssanrsannsras 150
N0 O A U Y= Y o ] 1= Vo o 150
A.2 D )= D = L= 0T 150
A.2.1 Transport LAYEr PrOtOCO] ..u.ueeiesiiseiitiniterastsras st s e s r e s s s s s s s ra s saaeaain e rannans 150
A.2.2 Command and Command COMPIETE .......ueiiii i s e s raare s sranr e e ranneeanns 151
F NG T T = T I = 1 7= Uod 1] L 151
B HTTP Server Supported Features and Limitation ......ccoviiiiiiiiii e eeas 153
B.1 Y0 o] 00 L= I = LB = 153
B.2 0T 0 L 153
C 2SI IR 4 1 = Ao PP 154
D How to Generate Certificates, PUblic Keys and CA’S ....ciiiiiiiiiiiieee e een e e 155
E Transceiver MOAe LimMitatiONS ...ttt e e s s e e e e e e s e e e e e e enanaenen 157
F RX StatiStiCS LiMitatioNS cuueieie ittt e e e e e s e e e e e e e a e e e e e e raeneaeneenees 158
G MDNS Supported Features and Limitations .......cocivieiiieiiiiiiii e e e e aens 159
L0t T B o] o To (=0 - 1 H 159
G.2  Specific BEhavior and ASSUMPLIONS ... eiueeiistisse st s et sa s sass e rr e e sainsranns 159
(0 T IR0 01 7= (o] LN 160
G.4  Errors NUMbDErs and COIMECHIONS wuuuuuuusesiiuutssssssssssaatesssiasssssasansssasnnssssasnsstsassnessssnnessssnnnssss 160
H Yo Yo (=] A T o 1= 4o T PP 162
H.1 10T o1 1 = L 1 AN o o= 163
6 Contents SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Figures

I o o A0 )T AN o =] 1 1Y/ 10
2-1.  Basic Networking Application State MacChine .......covueeiiiiiiiiiii i i e e 14
B I = T 1 o [ 11 = 4= 11T T o o N 19
L S T Yo = A @ ] =T o T 1 30
S O L /T Yo [N @ o o = o 40
S 2 o) {1 41
LS G J B 1Y ot @] o I o 41
9-1.  WLAN CONNECE COMIMANG 1. uuuttetiatesssassessasessaiasesssaassssaassestsassesssassnesssannnssssnnnesssnnnnsssns 47
12-1. HTTP GET REOUEST. cuuttttisteiiattetsste s ssss e sas et sa e s ta e et saa e e s s s e e e s s s r e s sanr e raannres 72
13-1. MDNS Getl SEIVICE SEOUEINCE . tuuuttisttisaeiaterase sttt sasr e sate e saas s et s sassaasnaaansrasesannerans 93
13-2.  Find FUll SErviCe After QUEIY . uueiiisseeiiutestrstessaste s raas e sraaaressaaanesssanesssasnesssannnsssannnessnnnns 94
L O = =T e T 1] o] - 118
T I =TS b= o ] = 119
16-1.  802.11 Frame StUCIUME .o sssstsneesssssssssassssssssse e s s s ssssssasasaaasssssssssssssssssssssssssnnneessssssnns 123
T 1= P 126
LT S 1= 127
R I3 O 0 o 1111 T 128
O U 5 1 - 132
T o oy I 1= g A S 1 o1 N 134
F S R O @ i (00 5 1Y/ G @] o U= 11 [ ] o 1R 149
N =1 Yo =T o I o] G 151
T - | - W (o LY @ o 1o ) 151
SWRU368-June 2014 List of Figures 7

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com
List of Tables

1-1. Common Terminology and ADDIeVIatioNS ....uuueiretiistiii i r e raaeaas 11
6-1.  SimpleLink Supported SOCKEE AP ... .uueeiiiei i s s st s s aas 34
9-1.  Supported Cryptographic AlGOrtMS .. ...iueiii i e nes 50
O O Y N N T =0 0= =7 £ 52
O YT o B = = =] (=] 55
O FO V=T o B = = T 1] (=] 56
O S Yo o B =T = 1] () 56
12-1. Enable Or DiSable HT TP SeIVeI .. uuteiiiieeiiiitesisatsessaate s saaats s ssan s s ssaaa s s s saann s s ssannnssaannessnnnns 79
12-2.  Configure HTTP POt NUMDEE .. .u ettt r e s st e e s e e s s s s e s s s s e s s e aannenans 79
12-3. Enable or Disable Authentication ChECK ........oieiiiiii i e e s s a e e e anas 80
12-4. Set or Get AUtheNntiCatioN NAME .. ..uueeiiiieii i r s ss s s s e s asaane s aaannessannns 80
12-5. Set or Get AUthENtICAtION PaASSWOIT .....ueeeetieeeessaaneeessaneessaanneesaanneessaannesaaannessaannnessannnessnnnns 81
12-6. Set or Get AUthENtICAtION REAIM .. ... ettt r e s s e s ssanr s saaann e s saannnssaannnessannns 81
12-7.  Set Or Get DOMAIN NAIME ... uuutiiiitetiite st ra s e sa et as e st sa s st saan s e s s s s nessannnnssannnns 81
12-8.  Set OF G URN NAIME .. iiiitttneessissssssassssssssse s s s s sssssssaassassssssnsssssssssssssssnnsnnnneessssssssss 82
12-9. Enable or Disable ROM WeD Pages ACCESS .. uuuuiiiiiiieiiaiiieeiaaianessaastessaansessaantessaannressaansessnns 82
12-10. SyStem INTOMMALION . uuueetietteis e et e s s e s s e s sa e et sa s a e st s ana e st saan e e s saannnsssannnnssannnns 83
2 Y 7Y 7T o 10 0 T 11T o 84
o 2 NN = 0110 4 S 0] 2 T 1T 84
5 T 10T 85
2 o o 0 T=T 1o g T o1y V] = | U 85
12-15. Display Profiles INfOrmation .. .....u e oot r e s s e e s sa s e s saann s s aaanne s aaannaeaaanns 85
12-16. P2P INTOIMALION 4 tttnnattiietess s aee s st ae st ae et s s e st s s e et s a e e st s a e e st s n s e s sann e s sann e s aaannnnss 86
2 3 VA= (=T 0 0 @0 g1 T T ] = 4o o 87
S N = 4110 4 S @ 0] 0 U= L1 L 88
12-19. Connection Policy CONfIgUIAtIoN .. ....eeiiseeeiiiiesiiise e sir s sr s ssaaa s s s saanr s ssaanssaaannesannnns 88
2 T o 0] 11T @0 g1 T U ] = 4o o 89
02 1o T 89
I e e o g1 T 1 =Y (o] o 89
I @ 1S A o 11 o 1 90
R O o T =0 013 (=T £ 96
R R = (] =T o] g 97
R JO e =T 0 T=3 (=T £ 99
R B S U Y= I =) 1 = 100
R o T e =0 1 TC] (=T £ 103
R TR = 1= 10 0 1=3 (=T £ 104
R R B = {1 =T o] g = 105
R TG T D 1= (] 0 =T o] g 107
IR B B = 1 ToT T o g Y = 108
L16-1.  NEWOIK LAYEIS .uetiieteiiieteeiaaeeesaa s e e s e e saa e et saaaas st san s e s saan s s st sannn e s saannessaannnesaaanneesnnns 123
L R e 0 (0 11 4] = 160
[ I N V7 11 =Y o [ Yo o] (= 162
List of Tables SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 1
l TEXAS SWRU368-June 2014

INSTRUMENTS
Overview

The SimpleLink™ Wi-Fi CC3100 and CC3200 are the next generation in Embedded Wi-Fi. The CC3100
Internet-on-a-chip™ can add Wi-Fi and Internet to any microcontroller (MCU), such as TI's ultra-low power
MSP430;,. The CC3200 is a programmable Wi-Fi MCU that enables true, integrated loT development.
The Wi-Fi Network Processor sub-system in both SimpleLink Wi-Fi devices integrates all protocols for Wi-
Fi and Internet, greatly minimizing MCU software requirements. With built-in security protocols, SimpleLink
Wi-Fi provides a robust and simple security experience.

The SimpleLink Host driver minimizes the host memory footprint requirements, requiring less than 7KB of
flash and 700B of RAM memory for a TCP client application. The driver follows strict ANSI C (C89) coding
standards, uses industry-standard BSD Sockets and simple APIs reducing integration and development
time for software and application developers. The driver is compatible and portable across different MCUs,
compilers, operating systems, communication interfaces and use cases.

The architecture of the SimpleLink Host Driver includes a set of six logical and simple APl modules:

» Device API — Provided to manage hardware-related functionality such as start, stop, set and read
device configurations.

e WLAN API — Designed to manage WLAN, 802.11 protocol-related functionality such as device mode
(station, AP or P2P), setting provisioning method, adding connection profiles and setting connection
policy.

» Socket API — The most common API set for user applications, and complies with Berkeley socket
APls.

* NetApp API — Designed to enable different networking services including HTTP server service, DHCP
server service and MDNS Client\Server service.

» NetCfg API — Provided for configuring different networking parameters, such as setting the MAC
address, acquiring the IP address by DHCP, and setting the static IP address.

» File System API — Designed to provide access to the serial flash component, for read and write
operations of networking or user proprietary data.

Figure 1-1 shows the host driver anatomy.

SWRU368-June 2014 Overview 9

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Document Scope www.ti.com

User
Application

OS Facilities SimpleLink Driver (SLD)

os Device NetConfig
Adaptation

Transport Layer Library

lIbSPI lIbUART

Figure 1-1. Host Driver Anatomy

1.1 Document Scope
The purpose of this document is to provide software programmers who are working with the Wi-Fi
subsystem the knowledge of the networking capabilities, and how to use these capabilities through the
host driver. This document includes an overview on how to write a networking application, a detailed
description of the networking operation modes and features of the device, and a review of each API of the
driver, accompanied by source code examples for each topic.

1.2 Host Driver SW Concepts
Before starting to work with the Wi-Fi subsystem host driver, it is important to understand the main
architectural concepts:

The host driver supports any standard C compiler (C89):

— The host driver is written in strict ANSI C (C89).

— The host driver does not use pragma or any other extended compiler attributes.

The host driver communicates with the device using messages called commands:

— The Wi-Fi subsystem supports the handling of a single command at a given time.

— The Wi-Fi subsystem will send a “Command Complete” message to signal a successful command
reception for each command.

The host driver supports asynchronous event handling:

— Some networking commands might take a long time to process (for example, a WLAN connection
command). Because of this, the Wi-Fi subsystem uses asynchronous events to signal the host
driver of certain status changes.

— In cases of “long” commands, the host driver will get an immediate Command Complete response,
followed by an asynchronous event later on, to signal that the process has finished and to return
the process results.

The microcontroller of the driver:

— Can run on 8-bit, 16-bit, or 32-bit.

— Can run on any clock speed — No performance or time dependency.

— Supports both big and little endian formats.

— Small memory footprint — Configurable at the time of compiling, the driver requires as low as 7KB of
code memory and 700 B of RAM memory.

10 Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com

Common Terminology and References

1.3

The standard interface communication port of the driver:

— SPI — Supports standard 4-wire serial peripheral interface:
* 8-, 16-, or 32-bit word length
» Default mode 0 (CPOL=0, CPHA=0)
e SPI clock can be configured up to 20 Mbps.

e CSisrequired.

» Additional IRQ line is required for async operations.

- UART

» Standard UART with hardware flow control (RTS/CTS) up to 3 Mbps.
» The default baud rate is 115200 (8 bits, no parity, 1 start/stop bit).

The driver supports systems using or not using OS:

— Simple OS wrapper, requiring only two object wrappers
— Sync Obj (event/binary semaphore)

— Lock Obj (mutex/binary semaphore)

— Built-in logic within the driver for system not running OS

Common Terminology and References

Table 1-1. Common Terminology and Abbreviations

Abbreviation

Meaning

Host

Host refers to an embedded controller running the SimpleLink
driver and using the SimpleLink device as a networking

peripheral.

Applicable documents:

e CC3100 data sheet (SWASO031)
e CC3200 data sheet (SWASO031)
» CC31xx Host Driver APIs

» CC31xx Host Interface

Additional Resources:
* www.ti.com/simplelinkwifi.
e CC31xx SimpleLink wiki.

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Overview 11


http://www.ti.com
http://www.ti.com/lit/pdf/SWAS031
http://www.ti.com/lit/pdf/SWAS031
http://software-dl.ti.com/ecs/cc31xx/APIs/public/cc31xx_simplelink/latest/html/index.html
http://processors.wiki.ti.com/index.php/CC31xx_Host_Interface
http://www.ti.com/simplelinkwifi
http://www.ti.com/simplelinkwifi-wiki
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Chapter 2
l };Eg?lgUMENTS SWRU368-June 2014

Writing a Simple Networking Application

Topic Page
2 B 1Y 7= = 13
12 Writing a Simple Networking Application SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS
www.ti.com Overview
2.1 Overview
This chapter explains the software blocks needed to build a networking application. In addition, this
chapter describes the recommended flow for most applications. The information provided is for guidance
only. Programmers have complete flexibility on how to use the various software blocks.
Programs using the SimpleLink device consist of the following software blocks:
* Wi-Fi subsystem initialization — Wakes the Wi-Fi subsystem from the hibernate state.
« Configuration — Primarily one-time configurations such as cold boot configuration, or infrequently used
device configurations. For example, changing the Wi-Fi subsystem from a WLAN STA to WLAN soft
AP or WLAN P2P device, or changing the MAC address. After the configuration phase, reboot the Wi-
Fi subsystem for the new configurations to take effect.
*  WLAN connection — The established physical interface is wireless LAN communication (for example,
manually connecting to an AP as a wireless station).
— DHCP - An IP address must be received before working with TCP/UDP sockets.
» Socket connection — Sets up the TCP/IP layer. This occurs in the following steps:
— Creating the socket — Select either TCP, UDP, or RAW sockets. Select whether the device will be
a client or a server socket. Define socket characteristics such as blocking/nonblocking and socket
time-outs.
— Querying for the server IP address — When implementing a client-side communication, usually
the remote server side IP address required for establishing the socket connection is not known.
Use DNS protocol to query the server IP address by using the server name.
— Creating socket connection — TCP socket requires the establishment of a proper socket
connection before continuing to perform data transactions.
» Data transactions — Once a socket connection is established, data can be transmitted between the
client and the server by implementing the application logic.
e Socket disconnection — After finishing the required data transactions, the socket communication
channel is closed.
» Wi-Fi subsystem hibernate — When the Wi-Fi subsystem is inactive for a long period of time, it goes
into hibernate state.
2.1.1 Basic Example Code
When implementing a networking application, consider the different application blocks, the host driver
software concepts described above and system aspects such as hardware and operating system.
Figure 2-1 shows a state machine diagram that describes the basic software design.
SWRU368-June 2014 Writing a Simple Networking Application 13

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

i3 TEXAS
INSTRUMENTS

Overview www.ti.com

Call WLAN disconnect, ,f"’_q_"‘\ — Netwaork configuration
Stop SimpleLink -:Iew:,e" l\ ,.’( done
Steg application Network
k Configurition
MNetwork configuration
dane |
- L
. ——
- H&— E— f WLAN
f’ |I Disconnected

__Call wahrecor [ ——
“ f \(’; \ )
LY _____..- \(\Em— Start Connection
S
[ = Dlmmw{f: EV pracess

.-f--' N
_f-' —
) s \ / /
TR N WLAN
( \1. Connv:l:tll'g
L . y \
EVENT

Fd \ SL WLAK | D SCONMECT_

¢ — \
o
- J\ I SL_WLAN_COMNECT
igﬂﬁ.mm bogi '-,L Socket '|r _EMENT
tronsartions Connected ], \ o """"-"'-N
- - I-. Cannected
[ seas
Acguiring 1P
\\ Socket \ addrase j
Conmecting /'
Socket connect
) ‘-\""-h__ __,-/
established " v SL_NETAPP_IPV4
— _ACQUIRED
Socket
initialization

Figure 2-1. Basic Networking Application State Machine

Figure 2-1 shows the different states described in this chapter, the host driver events which trigger the
code to move between different states, and basic error-handling events.

An example of the state machine is implemented in the following code:
« Init state — Example of initializing the Wi-Fi subsystem as a WLAN station:

case INIT:
status = sl_Start(0, 0, 0);
if (status == ROLE_STA)

{
g_State = CONFIG;
3
else
{
g_State = SIMPLELINK_ERR;
}
break;

* WLAN connection — Example of WLAN and network event handlers, demonstrating the WLAN
connection, waiting for a successful connection and acquiring an IP address:

/* SimpleLink WLAN event handler */
void SimpleLinkWlanEventHandler(void *pWlanEvents)

SIWlanEvent_t *pWlan = (SIWlanEvent_t *)pWlanEvents;

switch(pWlan->Event)

14 Writing a Simple Networking Application SWRU368-June 2014
Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Overview

case SL_WLAN_CONNECT_EVENT:

g_Event |= EVENT_CONNECTED;

memcpy(g_AP_Name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_name, pWlan-
>EventData.STAandP2PModeWlanConnected.ssid_len);

break;

case SL_WLAN_DISCONNECT_EVENT:
g_DisconnectionCntr++;
g_Event |= EVENT_DISCONNECTED;
g_DisconnectionReason = pWlan->EventData.STAandP2PModeDisconnected.reason_code;
memcpy (g_AP_Name, pWlan->EventData.STAandP2PModeWlanConnected.ssid_name, pWlan-
>EventData.STAandP2PModeWlanConnected.ssid_len);
break;

defaul t:
break;
T
}

/* SimpleLink Networking event handler */
void SimpleLinkNetAppEventHandler(void *pNetAppEvent)

SINetAppEvent_t *pNetApp = (SINetAppEvent_t *)pNetAppEvent;

switch( pNetApp->Event )

{
case SL_NETAPP_I1PV4_ACQUIRED:
g_Event |= EVENT_IP_ACQUIRED;
g_Station_Ip = pNetApp->EventData. ipAcquiredV4.ip;
g_GW_Ip = pNetApp->EventData.ipAcquiredV4._gateway;
g_DNS_Ip = pNetApp->EventData. ipAcquiredV4.dns;
break;
default:
break;
3

/* initiating the WLAN connection */
case WLAN_CONNECTION:

status = sl_WlanConnect(User.SSID,strlen(User.SSID),0,
&amp;secParams, 0);

if (status == 0)

{

g_State = WLAN_CONNECTING;
T
else
{

g_State = SIMPLELINK_ERR;
}

/* waiting for SL_WLAN_CONNECT_EVENT to notify on a successful connection */
case WLAN_CONNECTING:
it (g_Event
&amp ; EVENT_CONNECTED)
{
printf(*'Connected to %s\n', g_AP_Name);
g_State = WLAN_CONNECTED;
3

break;

/* waiting for SL_NETAPP_IPV4_ACQUIRED to notify on a receiving an IP address */
case WLAN_CONNECTED:

if (g_Event
&amp ; EVENT_IP_ACQUIRED)

SWRU368-June 2014 Writing a Simple Networking Application 15

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Overview www.ti.com

{
printf("'Received IP address:%d.%d.%d.%d\n",
(g_Station_Ip>>24)&amp;0xFF, (g_Station_Ip>>16)&amp;OxFF, (g_Station_Ip>>8)&amp;O0xFF, (g_Station_Ip&a
mp;0xFF));
g_State = GET_SERVER_ADDR;
}

break;

» Socket connection — Example of querying for the remote server IP address by using the server name,
creating a TCP socket, and connecting to the remote server socket:
case GET_SERVER_ADDR:
status = sl_NetAppDnsGetHostByName(appData.HostName,
strlen(appData.HostName),

&amp;appData.DestinationlP, SL_AF_INET);
if (status == 0)

{
g_State = SOCKET_CONNECTION;

3

else

{
printf(*"'Unable to reach Host\n");
g_State = SIMPLELINK_ERR;

3

break;

case SOCKET_CONNECTION:
Addr._sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(80);

/* Change the DestinationlP endianity, to big endian */
Addr.sin_addr.s_addr = sl_Htonl (appData.DestinationlP);

AddrSize = sizeof(SI1SockAddrin_t);
Sockld = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);
if( Sockld < 0 )
{
printf("Error creating socket\n\r');
status = Sockld;
g_State = SIMPLELINK_ERR;

}
if (Sockld >= 0)
{
status = sl_Connect(Sockld, ( SISockAddr_t *)

&amp;Addr, AddrSize);
if( status >= 0 )

~

g_State SOCKET_CONNECTED;

3
else
{
printf("Error connecting to socket\n\r");
g_State = SIMPLELINK_ERR;
b
3

break;

 Data transactions — Example of sending and receiving TCP data over the open socket:

case SOCKET_CONNECTED:
/* Send data to the remote server */
sl_Send(appData.SocklID, appData.SendBuff, strlen(appData.SendBuff), 0);

/* Receive data from the remote server */
sl_Recv(appData.SocklD,
&amp;appbData.Recvbuff[0], MAX_RECV_BUFF_SIZE, 0);

break;

16

Writing a Simple Networking Application SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Overview

» Socket disconnection — Example of closing a socket:

case SOCKET_DISCONNECT:
sl_Close(appData.SocklID);
/* Reopening the socket */
g_State = SOCKET_CONNECTION;
break;

* Device hibernate — Example of putting the Wi-Fi subsystem into hibernate state:

case SIMPLELINK_HIBERNATE:
sl_Stop(Q);
g_State = ..
break;

SWRU368-June 2014 Writing a Simple Networking Application 17

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 3
I TEXAS SWRU368-June 2014

INSTRUMENTS
Device Initialization

The Wi-Fi subsystem is enabled by calling the sl_Start() API. During the initialization, the host driver
performs the following key steps:

« Enable the bus interface (in CC3200 — SPI; in CC3100 — SPI or UART).
» Register the asynchronous events handler.

» Enable the Wi-Fi subsystem (in CC3200 this is done by the internal applications microcontroller. In
CC3100 it is done by the external host processor).

» Send a synchronization message to the Wi-Fi subsystem and wait for an IRQ in return signaling on
completion of the initialization phase.

Figure 3-1 shows the basic initialization flow:

18 Device Initialization SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

Host Simplelink Device
I N _ M
i APl =g Ty
|zer Application SirnpleLink Driver Host Interface Driver Sirnplelink Device
J‘ sl_Start J_ 4 10
£ —
L _ITHp ol
hdl
sl_DreviceDissble T
set nHib line low
| | ] -
| ke
4_IfReglntHdIr [irgHa rdlen) A
i T -
L
Y 1
d_DeviceEnable B
- T -
II SetnHib line high
= I :'. ! init
I L]
i /
|—|IS':,rncEij'.|"|'art / Init Complete
o A | Ewent /Set Host IR0
| -
| ¥
J | Call irgHardler
- T }
I
I
I. [ . T | onlyin2F
o d_Aritel) g L
| |
| slIfRead() -
T 1 -
Fead async [ k|
et I'
[5pwran I -
contest) |
I =k
!
!
SyncObjsenal | ey
o ! —
¥
RoleType

Figure 3-1. Basic Initialization Flow

The Wi-Fi subsystem initialization can take tens of mS to complete. The host driver supports two main
options of using the sl_Start(const void* plfHdl, char* pDevName, const P_INIT_CALLBACK
plnitCallBack) API:

» Blocking — pInitCallBack must be set to NULL. The calling application is blocked until the entire
initialization process completes (upon receiving the Init complete interrupt). See the following code

example:
1T( sl_Start(NULL, NULL, NULL) == 0)
{
LOG(*'Error opening interface to device\n");
SWRU368-June 2014 Device Initialization

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

}

* Asynchronous - plnitCallBack is given a pointer to a function that is called when the initialization
process completes. In this case, the call to sl_Start() will return immediately. See the following code
example:

Void InitCallBack(UINT32 Status)
{

}

Network_IF_SetMCUMachineState(MCU_SLHost_ INIT);

Void Network_IF_InitDriver(void)
{

sl_Start(NULL,NULL, InitCallBack);
while(!(g_usMCUstate & MCU_SLHost_INIT));

}

20 Device Initialization SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 4
l TEXAS SWRU368-June 2014

INSTRUMENTS

Device Configurations

Topic Page
N R © 1V = V= Y PP 22
A B oV (oI T T 1= T PP 22
e I VA AN N o = 1= =] S 22
R N L= Ao T S = 1= 1 = =T P 23
4.5 Internet and Networking Services Parameters .......cocoeoeiiiieiiiiie e eeeeeens 23
4.6 Power-Management ParametersS ... ....cuuieieieieieiiieieiaeeieieseiasesasesasaesaeansneaaannas 23
O A o= 1 N = 1= 1] =T PP 24

SWRU368-June 2014 Device Configurations 21

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Overview www.ti.com

4.1

4.2

4.3

Overview

The Wi-Fi subsystem has several configurable parameters that control its behavior. The host driver uses
different APIs to configure these parameters. The parameters are grouped based on their functionality.

Most of the parameters described in this chapter are stored in the serial flash (SFlash). If the parameter
values are not set by the user, the Wi-Fi subsystem will use the default values. A value stored in the
SFlash is always prioritized over the default value.

An application will usually need to configure its parameters when coming out of cold boot or when a
specific configuration change is required.

All the parameters configured in the SFlash take effect only in the next device boot.

This chapter explains all the parameters that the user can configure. This chapter also explains the read-
only parameters used for reading the device and networking status.

Device Parameters

Time and Date: Configures the device internal date and time. For more details, see Section 18.1. Note:
This parameter is retained in hibernate state but is reset to default in shutdown.

Firmware Version: A read-only parameter that returns the Wi-Fi subsystem firmware version. For more
details, see Section 18.1.

Device Status: A read-only parameter that returns status for the last events that recorded in the Wi-Fi
subsystem. For more details, see Section 18.1.

Asynchronous events mask: Masked events will not generate asynchronous messages (IRQs) from the
Wi-Fi subsystem. For more details, see sl_EventMaskGet, s|_EventMaskSet in the Section 18.1.

UART configuration: When using the UART interface, the application can set several UART parameters:
Baud rate, Flow Control and COM port. For more details, see Section 18.1.

WLAN Parameters

Device Mode — The Wi-Fi subsystem can operate in several WLAN roles. The different options are:
»  WLAN station

« WLAN AP

e WLAN P2P

For more details, see Section 18.2.

AP mode — If set to an Access-point role, the Wi-Fi subsystem has many configurations that can be set:
* SSID — AP name
e Country code
* Beacon interval
* Operational channel
» Hidden SSID — Enable or Disable
* DTIM period
e Security type — Possible options are:
— Open security
— WEP security
— WPA security
» Security password:
— For WPA: 8 to 63 characters
— For WEP: 5 to 13 characters (ASCII)
*  WPS state

For more details, see Section 8.1.3.

22

Device Configurations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

www.ti.com

TEXAS

INSTRUMENTS

WLAN Parameters

431

P2P — If set to Peer-to-Peer role, the Wi-Fi subsystem has many configurations that can be set:
» Device Name
* Device type

* Operational channels — Regulatory class determines the listen channel of the device during the P2P
find listen phase. Operational channel and regulatory class determines the operating channel preferre
by this device (if the device is the group owner, this is the operating channel). Channels should be on

d
e

of the social channels (1/6/11). If no listen or operational channel is selected, a random 1/6/11 channel

will be selected.

» Information elements — The application can be set to
MAX_PRIVATE_INFO_ELEMENTS_SUPPORTED information elements per role (AP / P2P GO). To
delete an information element, use the relevant index and length = 0. The application can be set to
MAX_PRIVATE_INFO_ELEMENTS_SUPPORTED to the same role. However, for AP no more than
INFO_ELEMENT_MAX_TOTAL_LENGTH_AP bytes can be stored for all information elements. For

P2P GO, no more than INFO_ELEMENT_MAX_TOTAL_LENGTH_P2P_GO bytes can be stored for all

information elements.
» Scan channels — Changes the scan channels and RSSI threshold.

For more details, see Chapter 11.

Advanced

Country code — Sets the Wi-Fi subsystem regulatory domain country code. Relevant for WLAN station
and P2P client modes only. For more details, see Section 18.2.

Tx power — Sets the maximal transmit power of the network processor subsystem. For more details, see
Section 18.2.

4.4 Network Parameters
MAC address — Sets the MAC address of the device. For more details, see Section 18.5.
IP address — Configures the Wi-Fi subsystem to use DHCP or static IP configuration. In case of static
configuration, the user can set the IP address, DNS address, GW address and subnet mask. For more
details, see Section 18.5.

4.5 Internet and Networking Services Parameters
HTTP Server: For more details, see Chapter 12.
DHCP Server: For more details, see Section 10.6.
MDNS: For more details, see Chapter 13.
SmartConfig: For more details, see Section 8.1.1.

4.6 Power-Management Parameters
Power management and energy preservation are among the most challenging issues for Wi-Fi systems.
Handling power regimes effectively is fundamental for any power-aware solution, particularly in cases
where a certain component of the overall solution requires more power than the rest of the system. Such
is the case for many embedded Wi-Fi-capable systems.

4.6.1 Power Policy
From host application perspective, only two modes of operation are explicitly selected by the host:
hibernate or enabled.
The Wi-Fi subsystem supports predefined power management policies which allow a host application to
guide the behavior of power-management algorithm. sl_PolicySet API is used to configure the device
power-management policy. The available policies are:
» Normal (Default) — Features the best tradeoff between traffic delivery time and power performance.

For setting normal power-management policy use:
SWRU368-June 2014 Device Configurations 23

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Power-Management Parameters www.ti.com

sl_WlanPolicySet(SL_POLICY_PM , SL_NORMAL_POLICY, NULL,O)

Always on — The Wi-Fi subsystem is kept fully active at all times, providing the best WLAN traffic
performance. This policy is user-directed, whereby the user may provide the target latency figure. For
setting always-on power-management policy use:

sl_wlanPolicySet(SL_POLICY_PM , SL_ALWAYS_ON_POLICY, NULL,0)

Long Sleep Interval — This low power mode comes with a desired max sleep time parameter. The
parameter reflects the desired sleep interval between two consecutive wakeups for beacon reception.
The Wi-Fi module computes the desired time and wakes up to the next DTIM that does not exceed the
specified time. The maximum allowed desired max sleep time parameter is two seconds. Note: This
policy works in client mode only. It automatically terminates mDNS and internal HTTP server running
on the device. TCP/UDP servers initiated by the user application lead to unpredictable system behavior
and performance. For setting low-latency power-management policy use:

sl_WlanPolicySet(SL_POLICY PM , SL_LONG_SLEEP_INTERVAL_ POLICY, NULL,0)

Low latency power — This device power management algorithm exploits opportunities to lower it's
power mode. Tradeoff tends toward power conservation performance (for example, sensor
application). Note: Low power mode is only supported when the Wi-Fi subsystem is not connected to
an AP, and thus mostly relevant to Transceiver mode. For setting low latency power management
policy use:

sl_WlanPolicySet(SL_POLICY_PM , SL_LOW_LATENCY_POLICY, NULL,O)

46.2 Advanced

See Section 4.6.

4.7 Scan Parameters
4.7.1 Scan Policy
SL_POLICY_SCAN defines a system scan time interval in case there is no connection. The default
interval is 10 minutes. After the scan interval is set, an immediate scan is activated. The next scan will be
based on the scan interval settings.
For example, to set the scan interval to a 1-minute interval, use:
unsigned long intervallnSeconds = 60;
#define SL_SCAN_ENABLE 1
sl_WlanPolicySet (SL_POLICY_SCAN,SL_SCAN_ENABLE, (unsigned char
*)&amp; interval InSeconds, sizeof(interval InSeconds));
For example, to disable scan:
#define SL_SCAN_DISABLE O
sI_WlanPolicySet(SL_POLICY_SCAN,SL_SCAN_DISABLE,0,0);
24 Device Configurations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Topic

Chapter 5

SWRU368-June 2014

WLAN Connection

Page

5.1 Manual Connection
5.2 Connection Using P
5.3 Connection Policies
5.4 Connection Related

0 )11 1=

Async Events ........ooeviiiiiiiiiinnns

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

WLAN Connection 25


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Manual Connection www.ti.com

Connecting to a WLAN network is the first step required before initiating a socket communication. The Wi-
Fi subsystem supports two ways of establishing a WLAN connection:

1. Manual connection — The application calls an API that triggers the connection process.

2. Connection using profiles — The Wi-Fi subsystem automatically connects to pre-defined connection
profiles.

5.1 Manual Connection
511 STA
For a manual connection, the user application must implement the following steps:
1. Call to the sl_WIlanConnect API. This API call accepts the SSID of the Access Point, the security type,
and key, if applicable.
2. Implement a callback function to handle the asynchronous connection event
SL_WLAN_CONNECT_EVENT, signaling the completion of the connection process.
For additional information about these APIs, refer to Section 18.2 or the doxygen API manual.
5.1.2 P2P
For details, see Chapter 11.
5.2 Connection Using Profiles
A WLAN profile provides the information required to connect to a given AP. This includes the SSID,
security type and security keys. Each profile refers to a certain AP. The profiles are stored in the NVMEM
(nonvolatile memory), and preserved during device reset. The following APIs are available for handling
profiles:
» sl _WilanProfileAdd — Used for adding a new profile. SSID and security information must be provided,
where the returned value refers to the stored index (out of the seven available).
» sl_WilanProfileDel — Used for deleting a certain stored profile, or for deleting all profiles at once. Index
should be the input parameter.
» sl_WilanProfileGet — Used for retrieving information from a specific stored profile. Index should be the
input parameter.
For additional information about these APIs, refer to the doxygen APl manual.
Download the latest SDK for the complete example code.
/* Delete all profiles (OxFF) stored */
sl_WlanProfileDel (OXFF);
/* Add unsecured AP profile with priority 0 (lowest) */
sl_WlanProfileAdd(SL_SEC_TYPE_OPEN, (unsigned char*)UNSEC_SSID_NAME, strlen(UNSEC_SSID_NAME),
g_BSSID, 0, 0, 0, 0);
/* Add WPA2 secured AP profile with priority 1 (0 is lowest) */
sl_WlanProfileAdd(SL_SEC_TYPE_WPA, (unsigned char*)SEC_SSID_NAME, strlen(SEC_SSID NAME), g_BSSID,
1, (unsigned char*)SEC_SSID_KEY, strlen(SEC_SSID_KEY), 0);
5.3 Connection Policies
SL_POLICY_CONNECTION passes the type parameters to the sl_WIlanPolicySet API to modify or set
the connection policies arguments. For additional information about this API, refer to the doxygen API
manual. Download the latest SDK for the complete example code.
WLAN connection policy defines five options to connect the SimpleLink device to a given AP. The five
options of the connection policy are:
* Auto — The device tries to connect to an AP from the stored profiles based on priority. Up to seven
26 WLAN Connection SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS

www.ti.com Connection Related Async Events

profiles are supported. Upon a connection attempt, the device selects the highest priority profile. If
several profiles are within the same priority, the decision is made based on security type (WPA2 ->
WPA -> OPEN). If the security type is the same, the selection is based on the received signal strength.

To set this option, use
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(1,0,0,0,0),NULL,0)

* Fast — The device tries to connect to the last connected AP. In this mode "probe request” is not
transmitted before "authentication request,” as both the SSID and channel are already known.

To set this option, use
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,1,0,0,0),NULL,0)

* anyP2P (relevant for P2P mode only) — The Wi-Fi subsystem tries to automatically connect to the first
P2P device available, supporting push-button only.

To set this option, use
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,1,0),NULL,0)

» autoSmartConfig — For auto SmartConfig upon restart (any command from the host ends this state).
To set this option, use
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,0,1),NULL,0)

For setting long sleep interval policy use:

unsigned short PolicyBuff[4] = {0,0,800,0}; // PolicyBuff[2] is max sleep time in mSec
sl_WlanPolicySet(SL_POLICY_PM , SL_LONG_SLEEP_INTERVAL_POLICY, PolicyBuff,sizeof(PolicyBuff));

5.4 Connection Related Async Events
5.4.1 WLAN Events
sl_WIlanEvtHdIr is an event handler for WLAN connection or disconnection indication. Possible events
are:
* SL_WLAN_CONNECT_EVENT - Indicates WLAN is connected.
+ SL_WLAN_DISCONNECT_EVENT - Indicates WLAN is disconnected.
5.4.2 Network Events
sl_NetAppEvtHdIr is an event handler for an IP address asynchronous event and is usually accepted
after a new WLAN connection. Possible events are:
 SL_NETAPP_IPV4_ACQUIRED - IP address was acquired (DHCP or static).
SWRU368-June 2014 WLAN Connection 27

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Chapter 6
l };Eg?lgUMENTS SWRU368-June 2014

Socket

Topic Page
S0 I 1V V=Y 29
6.2  SOCKEt CONNECTION FlOW ittt ittt it tae et eaaeenesneeseansensrnsensennsanssnnsnnenns 29
6.3  TCP CONNECTION FlOW 1itnutiitttitiiettitetaetatetasetanseeasseaasesasesansesasesensessnsssnserssesenns 30
6.4 UDP CONNECTION FlOW o1utiiittiitiitttiaeiitetsetasseeaateeasetasetassesasssesssssnsesnserosesesneennns 32
LTS T Yo Tod 1= S @] ] 4 (o o K= P 33
6.6  SimpleLink Supported SOCKEt APl......ciiiiii e et e e e e e e enenenns 34
28 Socket SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS

INSTRUMENTS

www.ti.com Overview

6.1 Overview
The networking API standard used in SimpleLink is BSD (Berkeley) sockets, upon which the Linux™,
POSIX, and Windows™ sockets APIs are based. The main differences are in error codes (return directly
without errno) and additional setsockopt() options.
» See Simplelink documentation and examples.
» Berkeley sockets on Wikipedia
The content of this page assumes a basic understanding of Internet protocol suite and the differences
between TCP and UDP connections. Here are some basic concepts:

6.1.1 TCP
A definition of TCP from Wikipedia follows:
The Transmission Control Protocol (TCP) is one of the core protocols of the Internet protocol suite (IP),
and is so common that the entire suite is often called TCP/IP. TCP provides reliable, ordered and error-
checked delivery of a stream of octets between programs running on computers connected to a local area
network, intranet or the public Internet. It resides at the transport layer. Applications that do not require the
reliability of a TCP connection may instead use the connectionless User Datagram Protocol (UDP), which
emphasizes low-overhead operation and reduced latency rather than error checking and delivery
validation.

6.1.2 UDP
A definition of UDP from Wikipedia follows:
The User Datagram Protocol (UDP) is one of the core members of the Internet protocol suite (the set of
network protocols used for the Internet). With UDP, computer applications can send messages, in this
case referred to as datagrams, to other hosts on an Internet Protocol (IP) network without prior
communications to set up special transmission channels or data paths. UDP is suitable for purposes
where error checking and correction is either not necessary or performed in the application, avoiding the
overhead of such processing at the network interface level. Time-sensitive applications often use UDP
because dropping packets is preferable to waiting for delayed packets, which may not be an option in a
real-time system. If error correction facilities are needed at the network interface level, an application may
use the Transmission Control Protocol (TCP) or Stream Control Transmission Protocol (SCTP) which are
designed for this purpose.

6.2 Socket Connection Flow
Figure 6-1 describes a general flow of TCP or UDP connection between a server and a client. The overall
flow is nearly identical to the Linux implementation.

SWRU368-June 2014 Socket 29

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://software-dl.ti.com/ecs/cc31xx/APIs/public/cc31xx_simplelink/latest/html/index.html
http://en.wikipedia.org/wiki/Berkeley_sockets
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Communications_protocol
http://en.wikipedia.org/wiki/Internet_protocol_suite
http://en.wikipedia.org/wiki/Reliability_(computer_networking)
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Error_detection_and_correction
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Local_area_network
http://en.wikipedia.org/wiki/Intranet
http://en.wikipedia.org/wiki/Public_Internet
http://en.wikipedia.org/wiki/Transport_layer
http://en.wikipedia.org/wiki/Connectionless_communication
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://en.wikipedia.org/wiki/Datagram
http://en.wikipedia.org/wiki/Transmission_Control_Protocol
http://en.wikipedia.org/wiki/Stream_Control_Transmission_Protocol
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

TCP Connection Flow www.ti.com

Server

sl_Socket

s|_Bind

sl_Listen

Client
¥

sl_Accept s|_Socket

Connection Establishment ¥
) sl_Connect

o

Connection Termination

Figure 6-1. Socket Connection Flow

6.3 TCP Connection Flow
The following program structure provides some basic ideas of how to use the SimpleLink API. For a full
sample application code, see tcp_socket in the SDK examples.

6.3.1 Client Side
First, create a socket. The returned socket handler is the most important element of the application.
Networking will not work without the returned socket handler.
int SocklD;
SockID = sl_Socket(SL_AF_INET, SL_SOCK_STREAM, 0);

30 Socket SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com TCP Connection Flow

6.3.2

SL_AF_INET indicates using IPv4 and SL_SOCK_STREAM indicates using TCP. Definitions for both
values are in the socket.h header file. The example sets 0 in the third parameter to select a default
protocol from the selected domain and type. More detail usage can be found in the online documentation.
Definition of some structures and constants is in the socket.h header file inside SDK.

As a TCP client, the application executes sl_Connect() to connect to a server. The server implementation
can be found below.

/* IP addressed of server side socket. Should be in long format,
* E.g: Oxc0a8010a == 192.168.1.10 */
#define 1P_ADDR 0xc0a80168

int Status;
int Port = 5001;
SI1SockAddrin_t Addr;

Addr.sin_family SL_AF_INET;
sl_Htons((UINT16)Port);

Addr.sin_addr.s_addr = sl_Htonl ((UINT32)1P_ADDR);

Addr.sin_port

Status = sl_Connect(SocklID, ( SISockAddr_t *) &amp;Addr, sixeof(SISockAddrin_t));

The struct Addr specifies destination address and relevant information. Because struct type SISockAddr
is generic, use SISockAddrin_t to fill the details and cast it into SISockAddr. Upon successful
connection, the SockID socket handler is ready to perform data exchange.

sl_Send() and sl_Recv() functions can be used for data exchange. Define the buffer size.

#define BUF_SIZE 1400

char SendBuf[BUF_SI1ZE];

/* Write data to your buffer*/
<write buffer action>

Status = sl_Send(SocklID, SendBuf, BUF_SIZE, 0 );

char RecvBuf[BUF_SIZE];

Status = sl_Recv(SocklID, RecvBuf, BUF_SIZE, 0);

Upon completion, close the socket with sl_Close() to allow the remaining applications to reuse the
resource if needed.

sl_Close(SocklID);

Server Side

Unlike TCP client, a TCP server must establish several things before communication can occur.
» Similar to client implementation, create a TCP-based IPv4 socket.
SockID = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);

* In a TCP server implementation, the socket must perform Bind and Listen. Bind is used to give the
server socket an address. Listen puts the socket in listening mode for an incoming client connection.

#define PORT_NUM 5001

SISockAddrin_t LocalAddr;

LocalAddr.sin_family SL_AF_INET;
sl_Htons(PORT_NUM);
LocalAddr.sin_addr.s_addr = O;

Status = sl_Bind(SockID, (SLSockAdd_t *) &amp;LocalAddr, sizeof(SISockAddrin_t));

LocalAddr.sin_port

Status = sl_Listen(SockID, 0);

» With the socket now listening, accept any incoming connection request with sl_Accept(). There are
two ways to perform this: blocking and nonblocking. This example uses the nonblocking mechanism
with sl_SetSockOpt() and has the sl_Accept() placed in a loop to ensure it always retries connection

SWRU368-June 2014 Socket 31
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://software-dl.ti.com/ecs/cc31xx/APIs/public/cc31xx_simplelink/latest/html/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

UDP Connection Flow www.ti.com

regardless of each failure. Details about blocking and nonblocking can be found in Section 6.5.1.
Upon a successful connection, a new socket handler newSockID returns, which is then used for future
communication.
long nonBlocking = 1;
int newSocklID;

Status = sl_SetSockOpt (SocklID, SL_SOL_SOCKET, SL_SO_NONBLOCKING, &amp;nonBlocking,
sizeof(nonBlocking));

while( newSockID < 0 )
{
newSocklID = sl_Accept(SocklD, ( struct SlISockAddr_t
*) &amp;Addr, (S1Socklen_t*) &amp;AddrSize) ;
if( newSockID == SL_EAGAIN )

{
/* Wait for 1 ms */
Delay(1);
b
else if( newSockID < 0 )
{
return -1;
¥
3

Data exchange is exactly the same as implemented in client. The user may need to reverse the order;
when one side is sending, the other side must be receiving.

#define BUF_SIZE 1400
char SendBuf[BUF_SIZE];

/* Write data to your buffer*/

<write buffer action>

Status = sl_Send(newSocklID, SendBuf, BUF_SIZE, 0 );

char RecvBuf[BUF_SIZE];

Status = sl_Recv(newSocklID, RecvBuf, BUF_SIZE, 0);

At the end, close both sockets with sI_Close() to allow the remaining applications run to reuse the
resource if needed.

sl_Close(newSocklID);

sl_Close(SocklID);

6.4 UDP Connection Flow

The following program structure provides some basic ideas of how to use the SimpleLink API. For a full
sample application code, see udp_socket in the SDK examples.

6.4.1 Client Side

Similar to the previous TCP example, first create a IPv4-based socket. However, change the second
parameter to SL_SOCK_DGRAM, which indicates the socket will be used for UDP connection.
SockID = sl_Socket(SL_AF_INET, SL_SOCK_DGRAM, 0);

Because UDP is a connectionless protocol, the client can start sending data to a specified target address
without checking whether the target is alive or not.

#define IP_ADDR 0xc0a80164
#define PORT_NUM 5001
32 Socket SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

WWW.1i

TEXAS
INSTRUMENTS

i.com UDP Connection Flow

Addr .sin_family SL_AF_INET;
Addr.sin_port sl_Htons((UINT16)PORT_NUM);

Addr.sin_addr.s_addr = sl_Htonl ((UINT32)1P_ADDR);

Status = sl_SendTo(SocklID, uBuf.BsdBuf, BUF_SIZE, O, (SISockAddr_t *) &amp;Addr,
sizeof(SI1SockAddrin_t));

Finally, close the socket.
sl_Close(SocklID);

6.4.2 Server Side
The server side of the socket is identical to the client side.
SockID = sl_Socket(SL_AF_INET,SL_SOCK_DGRAM, 0);
Similar to TCP, bind the socket to the local address. No listening is required as UDP is connectionless.
#define PORT_NUM 5001
SISockAddrin_t LocalAddr;
AddrSize = sizeof(SI1SockAddrin_t);
TestBufLen = BUF_SIZE;
LocalAddr.sin_family = SL_AF_INET;
LocalAddr.sin_port = sl_Htons((UINT16) PORT_NUM);
LocalAddr.sin_addr.s_addr = 0O;
Status = sl_Bind(SockID, (SISockAddr_t *) &amp;LocalAddr, AddrSize);
The socket now tries to receive information on socket. If the user did not specify the socket option as
nonblocking, this command is blocked until an amount of BUF_SIZE of data is received. The fifth
parameter specifies the source address from which the data is being sent.
#define BUF_SIZE 1400
SISockAddrin_t Addr;
char RecvBuf[BUF_SI1ZE];
Status = sl+RecvFrom(SocklID, RecvBuf, BUF_SIZE, 0, (SISockAddr_t *) &amp;Addr, (SISocklen_t*)
&amp;AddrSize );
Close the socket once communication is finished.
sl_Close(SocklID);
6.5 Socket Options
6.5.1 Blocking versus NonBlocking
Depending on your implementation, the application can be run with or without OS. Normally when the
application is without OS, set the socket option to nonblocking with sI_SetSockOpt() with the third
parameter as SL_SO_NONBLOCKING. An OS-based application, however, has the option to perform
multithreading and can handle blocking functions.
Status = sl_SetSockOpt(SocklID, SL_SOL_SOCKET, SL_SO_NONBLOCKING,
&amp;nonBlockingValue, sizeof(nonBlockingValue)) ;
If the blocking mechanism is used, these functions will block until execution is finished.
If the nonblocking mechanism is used, these functions will return with an error code. The value of the error
codes depends the function being used. For details, see the online documentation.
sl_Connect(), sl_Accept(), sl_Aend(), sl_Aendto(), sl_Recv(), and sl_Recvfrom() are affected by this
flag. If not set, the default is blocking.
An example with slI_Connect() on a client application:
SWRU368-June 2014 Socket 33

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://software-dl.ti.com/ecs/cc31xx/APIs/public/cc31xx_simplelink/latest/html/index.html
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Socket Options www.ti.com

6.5.2

« Blocking: sl_Connect() blocks until connecting to a server, or an error occurs. Do not use blocking if
your application is single-threaded and must perform other tasks as well (such as handling multiple
sockets to read/write). However, using blocking is fine if the application is OS-based (like FreeRTOS).

Status = sl_Connect(SocklID, ( SISockAddr_t *) &amp;Addr, AddrSize);

» NonBlocking: sl_Connect() returns immediately, regardless of connection. If connection is successful, a
value of 0 returns. If not, the function returns SL_EALREADY under normal conditions. TI recommends
that the function is called in a loop so that the function keeps retrying the connection. The advantage of a
nonblocking mechanism is to prevent the application from getting stuck. This is particularly useful if your
application must perform other tasks (such as blinking LED, reading sensor data, or having other
connections simultaneously) at the same time.

while( Status < 0 )

{

Status = sl_Connect(SocklID, ( SISockAddr_t *)&amp;Addr, AddrSize);
if( Status == SL_EALREADY )

{
/* Wait for 1 ms before the next retry */
Delay(1);
3
else if( Status < 0 )
{
return -1; //Error
}

/* Perform other tasks before we retry the connection */

}

Secure Sockets
See Section 9.2.

6.6 SimpleLink Supported Socket API
Table 6-1 describes supported BSD sockets and the corresponding SimpleLink implementation.
Table 6-1. SimpleLink Supported Socket API
BSD Socket Slmplellnk. Server/Client Side TCP/UDP Description
Implementation
Creates an endpoint for
socket() sl_Socket() Both Both communication
bind() sl_Bind() Server Both Assigns a socket to an
address
. . Listens for connections
listen() sl_Listen() Server Both on a socket
connect() sl_Connect() Client Both Initiates a connection on
a socket
Accepts an incoming
accept() sl_Accept() Server TCP connection on a socket
Writes and reads data to
send(), recv() sl_Send(), sl_Recv() Both TCP and from TCP socket.
write(), read() Not supported
sl_SendTo(), Writes and reads data to
sendto(), recvirom() sl_RecvFrom() Both ubP and from UDP socket
34  Socket SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

SimpleLink Supported Socket API

Table 6-1. SimpleLink Supported Socket API (continued)

BSD Socket

Simplelink
Implementation

Server/Client Side

TCP/UDP

Description

close()

sl_Close()

Both

Both

Causes the system to
release resources
allocated to a socket. In
case of TCP, the
connection is
terminated.

gethostbyname(),
gethostbyaddr()

select()

sl_Select()

Both

Both

Used to pend, waiting
for one or more of a
provided list of sockets
to be ready to read,
ready to write, or that
have errors

poll()

Not supported

getsockopt()

sl_SockOpt()

Both

Both

Retrieves the current

value of a particular

socket option for the
specified socket

setsockopt()

sl_SetSockOpt()

Both

Both

Sets a particular socket
option for the specified
socket

htons(), ntohs()

sl_Htons(), sl_Ntohs()

Both

Both

Reorders the bytes of a
16-bit unsigned value
from processor order to
network order

htonl(), ntohl()

sl_Htonl(), sl_Ntohl()

Both

Both

Reorders the bytes of a
32-bit unsigned value
from processor order to
network order

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Socket 35


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 7
l TEXAS SWRU368-June 2014

INSTRUMENTS

Device Hibernate

Hibernate is the lowest power state of the device. In this state the Wi-Fi subsystem's volatile memory is
not maintained. Only the RTC is maintained, for faster boot time and for keeping the system date and
time.

The Wi-Fi subsystem goes into hibernate on a call to the sl_Stop API. This API receives only one
parameter, a timeout parameter that configures the device to use the minimum amount of time to wait
before going to hibernate.

For more details, refer to Chapter 18 and the API Doxygen application note.

36 Device Hibernate SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Chapter 8
l -{‘IE)S(?IEUMENTS SWRU368-June 2014
Provisioning
Topic Page

S 0 I = o ) V2 K=Y o ] 1 o [ PP 38
SWRU368-June 2014 Provisioning 37

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Provisioning www.ti.com

8.1 Provisioning

8.1.1 SmartConfig

8.1.1.1 General Description

SmartConfig is a method of remotely passing WLAN credentials (SSID, security credentials) to a
CC3100/CC3200 device planned to be used as STA.

8.1.1.2 How to Use / API

8.1.1.2.1 Automatic Activation

To enable the feature, start the SimpleLink device. The device should start as STA role. Assuming no
profile was added earlier, after a few seconds with no commands SmartConfig should start.

To start the SmartConfig application on a smart phone or PC:

1. Connect the smart phone to any Wi-Fi network.

2. Enter the WLAN credentials (SSID, security credentials).

3. Supply a key (Optional. Used to encrypt the Wi-Fi password).

4. Press the Start button.

The SmartConfig operation should complete in few seconds. However, the operation can take up to two
minutes to complete. If the requested network is in the device's proximity, the device will connect to it
immediately.

The following topics apply when using automatic activation:

e Any command sent to the device will terminate the SmartConfig operation.

» If a key is stored at the device serial flash, the password will be encrypted and the key must be
supplied.

» If the device configuration was changed before SmartConfig was automatically started, this may cause
problems. In this case ensure the following:

— Auto Start policy is set.
— Auto SmartConfig policy is set.
— No profile was added earlier.

To verify the configuration, call:
sl_WlanPolicyGet(SL_POLICY_CONNECTION, O, pval, pValLen);

The returned policy will be stored in the allocated buffer pointed by pVal.
Bits 0 and 4 should be set if Auto Start and Auto SmartConfig policies are set.

If this is not the case, set these policies manually by calling:
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(1,0,0,0,1),NULL,0)

To ensure no profile is saved, remove all saved profiles by calling:
sl_WlanProfileDel (255);

After sending these commands, reset the device and SmartConfig should operate successfully.

8.1.1.2.2 Manual Activation

To start SmartConfig manually, send the following command:

sl_WlanSmartConfigStart(groupldBitmask,
cipher,
publicKeylLen,
grouplKeylLen,
group2KeylLen,

38 Provisioning SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
www.ti.com Provisioning
publicKey,
grouplKey,
group2Key)

Parameters description:
» groupldBitmask — Use 1 as the default group ID bitmask (group ID 0).

To encrypt the password when the encryption key is not stored in the serial flash of the device, use:
e cipher=1

* publickeyLen =16

e grouplKeyLen =0

* group2KeyLen =0

» publickey = put the key here (use a 16-character string)
e grouplKey = NULL

e group2Key = NULL

To encrypt the password when the encryption key is stored in the serial flash of the device, use:
* cipher=0

* publickeyLen =0

e grouplKeyLen =0

* group2KeyLen =0

e publickey = NULL

e grouplKey = NULL

* group2Key = NULL

To avoid encrypting the password use:

e cipher=1

* publickeyLen =0

e grouplKeylLen =0

e group2KeyLen =0

* publicKkey = NULL

e grouplKey = NULL

e group2Key = NULL

After sending this command, SmartConfig will start.

When running SmartConfig manually, if a key to encrypt the password is stored in the external serial flash
or supplied at the command, it is necessary to supply this key in the SmartConfig Application.

8.1.1.2.3 Stopping Smart Config

To stop the SmartConfig operation call:
sl_WlanSmartConfigStop()

After the device is connected to the requested network it should receive an IP address from the AP or
router.

If the SmartConfig operation does not end successfully, it could be because the Wi-Fi network to which
the smart phone is connected is using transmissions modes and rates that are not suitable for
SmartConfig. In this case, use the AP Provisioning method.

8.1.2 AP Mode

8.1.2.1 General Description
AP provisioning is a method of passing WLAN credentials (SSID, security credentials) to an accessory.

SWRU368—-June 2014 Provisioning 39

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Provisioning www.ti.com
8.1.2.2 How to Use/API

First start the SimpleLink device in AP Role. There are two methods to start:

e Call sl_WlanSetMode(mode) where the mode should be ROLE_AP (2). Reset the device. For
additional information see Chapter 10.

* Force the device to start as an AP.

After the device is started as AP, search for it with the smart phone or any other device with Wi-Fi
connectivity.

The device should appear in the list containing all available networks. The device name should be
mysimplelink-xxyyzz where xxyyzz are the last six digits of the device MAC address.

If the user already changed the device SSID by calling sI_WIlanCfgSet(0, 0, ssid_length, ssid), this SSID
will be shown on the list.

If the user has not changed the SSID, but changed the Device URN by calling s|_NetAppSet(16, 0,
urn_length, urn), then the device nhame should be urn-xxyyzz where xxyyzz are the last six digits of the
device MAC address.

At the device screen, choose the device network and connect to it.

Note: The connection should be unsecured unless the user changed the mode. In this case, supply the
password entered when the device requests it.

Once the device is connected, open a browser and go to: http://www.mysimplelink.net.
Go to the Profiles tab.

Enter the WLAN credentials (SSID, security type, and key), select the priority for this profile (any value
between 0-7), and press Add. See Figure 8-1.

= SimpleLink{TM)] - CC3%ex - Tl WiFi On Chip - Windows Internet Explorer

@.\ o > & | http: v mysimplelink.netf L B¢
w

ot | @ SimpleLink{TM) - CC3xxx - TIWiFi On Chip | | fi} T \:I [

VR E T Status Device Config IP Config Profiles Tools
S

Add Profile
SsID: my_home_ap
Security Type: O Open O WEP O WPAT & WPA2
Security Key: qwerty123 Hexadecimal digits - any combination of 0-9, a-f and A-F
Profile Priority: q Enter a value 0-7 (0 = highest)

Add

The new Profile will take affect only after reset
Figure 8-1. AP Mode Connect

Scroll to the bottom of the web page and check that the device is added to the Profiles (the password will
not be displayed). See Figure 8-2.

40 Provisioning SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.mysimplelink.net/
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
www.ti.com Provisioning
Profiles
< O 1. my_home_network > Security: WPA Priority: 0
02 - Security: - Priority: -
03.- Security: - Priority: -
4. - Security: - Priority: -
s - Security: - Priority: -
6. - Security: - Priority: -
a7.- Security: - Priority: -

[ Remove Selected Profiles ]

Figure 8-2. Profiles

Now start the device in STA Role. Go to the Device Config tab and set Device Mode to Station (or remove
the Force AP constraint) and reset the device. After resetting the device, the device connects
automatically to the requested network. See Figure 8-3.

* & | hikpeffwn mysimplelink, netf v || X

{8 SimpleLink{TH} - CC3o0x - T1WIF On Chip | | - B e - sk Page

—en——
mysimplelink Status Device Config IP Config Profiles

Tools

Device Conﬁguration — Some parameters were changed, System may require reset —

Device
Device Name: mysimplelink
Domain Name: mysimplelinknet
Apply

|Station 2

Device Mode:

Mode will take effect after Reset

Figure 8-3. Device Config Tab

8.1.2.3 Things to Note when Configuring AP Provisioning

When connecting with a smart phone to the (AP) device, the device will allocate an IP address as it runs
DHCP Server. The smart phone (or other configuring device) should not be using a static IP address.

After entering the WLAN credentials (at the Profiles tab), move to STA mode and reset the device. The
device should connect to the requested network and receive an IP address from the AP or router.

8.1.3 WPS

8.1.3.1 General Description

WPS (Wi-Fi protected setup) is a standard for easy and secure wireless network set up and connections,
and allows both push-button and PIN-based access to Wi-Fi networks.

SWRU368—-June 2014 Provisioning 41

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Provisioning www.ti.com

Push-button: Push the WPS button in the AP or, if the button is not available, start the WPS process
using the GUI of the AP. The AP will enter the WPS provisioning process for 2 minutes. During this period,
the SimpleLink device should also enter the WPS provisioning process by calling the sI_WlanConnect
API with WPS parameters (see Section 8.1.3.3). For example, calling this APl can be mapped to a push-
button in the MCU. At the end of this process, a wireless network with a network name and security is
configured automatically.

PIN-based: Enter the pin generated by the host using the GUI of the AP. The AP will enter WPS

provisioning process for 2 minutes. During this period, the SimpleLink device should also enter the WPS
provisioning process by calling the sI_WlanConnect API with WPS parameters (see Section 8.1.3.3). At
the end of this process, a wireless network with a network name and security is configured automatically.

Once the WPS process completes successfully, connection with the AP is established in the correct
security setting according to the configuration of the AP (Open, WEP, WPA, or WPA2). The connection
parameters are saved as a profile. Using the connection policy AUTO triggers a reconnection after a reset.

8.1.3.2 How to Use/API
sl_WlanConnect(char* pName, int NamelLen, unsigned char *pMacAddr, SlSecParams_t* pSecParams ,
SISecParamsExt_t* pSecExtParams);

This API with the correct settings can trigger a WPS connection with both configurations: push-button and
PIN-based.
Parameter configuration:
» pName — NULL
* NamelLen -0
* unsigned char *pMacAddr — NULL
e SlSecParamsExt_t* pSecExtParams — not relevant for WPS, set as NULL
* Push-button:
— SlSecParams_t* pSecParams: Type — SL_SEC_TYPE_WPS PBC (3)

Key — NULL
Key length — setto O

e SlSecParams_t* pSecParams: Type — SL_SEC_TYPE_WPS_PIN (4)
Key — WPS pin code
Key length — WPS pin code length

int sl_WlanProfileGet(int Index,char* pName, int *pNameLen, unsigned char *pMacAddr,
SISecParams_t* pSecParams, SlSecParamsExt_t* pEntParams, unsigned long *pPriority)

- This API retrieves the profile parameters which were saved during the WPS connection process.
sl_WlanProfileDel (int Index)

- This API is used to delete a profile. It can be used to delete the profile which was saved during the WPS
connection process. Calling this API with index set as 255 erases all stored profiles.

8.1.3.3 Example of Using WPS
// Push Button

void main()

{
SISecParams_t WPSsecParams;
Int status;

Int role;

role = sl_Start(NULL, NULL, NULL);
ifC 0 > role )

{
printf(*"failed start cc3100\n");

42 Provisioning SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
www.ti.com Provisioning
}
if(role == ROLE_STA)
{
WPSsecParams.Type = SL_SEC_TYPE_WPS_PBC;
WPSsecParams.Key = NULL;
WPSsecParams.KeyLen = O;
status = sl_WlanConnect(0,0,0,&amp;WPSsecParams,0);
while (SL_IPEQUIRED != g_SlIConnState)
{
Sleep(20);
3
3
}
// PIN-based
void main(Q)
{
SISecParams_t WPSsecParams;
Int status;
Int role;
role = sl_Start(NULL, NULL, NULL);
ifC 0 > role )
{
printf(*"failed start cc3100\n");
3
if(role == ROLE_STA) {
WPSsecParams.Type = SL_SEC_TYPE_WPS_PIN;
WPSsecParams.Key = "34374696'"; //example pin code
WPSsecParams.KeylLen = 8;
status = sl_WlanConnect(0,0,0,&amp;WPSsecParams,0);
while (SL_IPEQUIRED != g_SlIConnState) {
Sleep(20);
3
3
}
SWRU368-June 2014 Provisioning 43

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Chapter 9
l };Eg?lgUMENTS SWRU368-June 2014

Security

Topic Page
LS 0 VL I NN ST = o U Y PP 45
S S 1= o] U =T IS Lo = PP 47
9.3  File SYSTEM SECUITY . euiuitieiieeeee et e ettt et ee e et e e e e eneete s e e eaenentere e enenannens 50

44 Security SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com WLAN Security

9.1 WLAN Security

9.1.1 Personal

The Wi-Fi subsystem supports the Wi-Fi security types AES, TKIP & WEP. The personal security type and
personal security key are set in both the manual connection API or profiles connection API by the same
parameter type — SISecParams_t. This structure consists of the following fields:

» Security Type — The type of security being used. Options include:
— SL_SEC_TYPE_OPEN - No security (default value).
— SL_SEC_TYPE_WEP — WEP security.

— SL_SEC TYPE_WPA - Used for both WPA\PSK and WPA2\PSK security types, or a mixed mode
of WPA\WPA2 PSK security type (for example, TKIP, AES, mixed mode).

— SL_SEC _TYPE_WPA_ENT — WPS security. For more information refer to Section 8.1.3.

— SL_SEC_TYPE_WPS_PBC ENT — Push-button WPS security. For more information refer to
Section 8.1.3.

— SL_SEC_TYPE_WPS_PIN ENT — Pin-based WPS security. For more information refer to
Section 8.1.3.

» Key — A character area containing the pre-shared key (PSK) value.
» Key length — The number of characters of the pre-shared key.

Example code for adding a WPA2 secured AP profile:

secParams.Type = SL_SEC_TYPE_WPA;
secParams.Key = SEC_SSID_KEY;
secParams.KeyLen = strlen(SEC_SSID_KEY);

sl_WlanProfileAdd((char*)SEC_SSID_NAME, strlen(SEC_SSID NAME), g_BSSID, &amp;secParams, 0, 7, 0);
9.1.2 Enterprise

9.1.2.1 General Description

The SimpleLink device supports Wi-Fi enterprise connection, according to the 802.1x authentication
process. An enterprise connection requires the radio's server behind the AP authenticate the station. The
following authentication methods are supported on the device:

*» EAP-TLS

* EAP-TTLS with MSCHAP
* EAP-TTLS with TLS

* EAP-TTLS with PSK

* EAP-PEAP with TLS

+ EAP-PEAP with MSCHAP
* EAP-PEAP with PSK

» EAP-FAST

After the station has been authenticated, the AP and the station negotiate WPA(1/2) security.

9.1.2.2 How to Use / API

When connecting to an enterprise network, three files are needed:
* Private Key — The station (client) RSA private key file in PEM format

« Client Certificate — The certificate of the client given by the authenticating network (ensures the public
key matches to the private key) in PEM format

» Server Root Certificate Authority file — This file authenticates the server. This file must be in PEM
format.

These three files must be programmed with the following names so the device will use them:

SWRU368-June 2014 Security 45

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

WLAN Security www.ti.com

» Certificate authority: /cert/ca.pem
* Client certificate: /cert/client.pem
* Private key: /cert/private.key

Establishing a connection:

sl_WlanConnect(char* pName, int NamelLen, unsigned char *pMacAddr, SlSecParams_t* pSecParams ,
SISecParamsExt_t* pSecExtParams)

sl_WlanProfileAdd(char* pName, int NameLen, unsigned char *pMacAddr, SlSecParams_t* pSecParams ,
SISecParamsExt_t* pSecExtParams, unsigned long Priority, unsigned long Options)

The sl_WIlanConnect and the sl_WIlanProfileAdd commands are used for different types of Wi-Fi
connection. The connect command is for a one-shot connection, and the add profile used when auto
connect is on (see the add profile white papers). Use those commands with extra security parameters for
the enterprise connection — SISecParamsExt_t.

A short view of the first five parameters of those commands follows. (Learn more of the extra parameters
of the add profile command in its white paper.)

1. SSID name — The name of the Wi-Fi network

2. SSID length

3. Flags - Not applicable for enterprise connection

4. Pointer to SISecParams _t -

typedef struct

{
unsigned char Type; - type should be SL_SEC_TYPE_WPA_ENT
char* Key; - a key password for the enterprise connection that
must have it. MSCHAP, FAST ETC.
unsigned char KeylLen;
}S1SecParams_t;

5. Pointer to SISecParamsExt_t-

typedef struct

{
char* User; - the enterprise user name
unsigned char UserLen;
char* AnonUser; - the anonymous user name (optional) for two phase

enterprise connections.

unsigned char  AnonUserLen;

unsigned char Certlndex; - not supported

unsigned long EapMethod; -
SL_ENT_EAP_METHOD_TLS
SL_ENT_EAP_METHOD_TTLS_TLS
SL_ENT_EAP_METHOD_TTLS_MSCHAPv2
SL_ENT_EAP_METHOD_TTLS_PSK
SL_ENT_EAP_METHOD_PEAPO_TLS
SL_ENT_EAP_METHOD_PEAPO_MSCHAPV2
SL_ENT_EAP_METHOD_PEAPO_PSK
SL_ENT_EAP_METHOD_PEAP1_TLS
SL_ENT_EAP_METHOD_PEAP1_MSCHAPVv2
SL_ENT_EAP_METHOD_PEAP1_PSK
SL_ENT_EAP_METHOD_FAST_AUTH_PROVISIONING
SL_ENT_EAP_METHOD_FAST_UNAUTH_PROVISIONING
SL_ENT_EAP_METHOD_FAST_NO_PROVISIONING

}SISecParamsExt_t;

9.1.2.3 Example
Figure 9-1 shows an example of a simple WLAN connect command to an enterprise network.

46 Security SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com Secured Socket

void WlanConnect()

{

515ecParams_t secParams;
51SecParamsExt_t extParams;

ff fill the security parameters

secParams.Key = "wfdsdnke3dwkidde™;
secParams.Keylen = strlen("xfdsdnke34wkidde™);
secParams.Type = 5L_SEC_TYPE_WPA_ENT;

ff fill the enterprise extra parameters

extParams.User = "myRealUserName™;

extParams.Userlen = strlen{"myRealUserName™);
extParams.AncnUser = “myFakePhasel”;
extParams.AncnUserlen = strlen("myFakePhasel™);
extParams.EapMethod = SL_ENT_EAP METHOD PEAP@ MSCHAPv2;

// connect command
sl WlanConnect("enterpriseNetwork"”,strlen{"enterpriseletwork™),8,&secParams,fextParams);

Figure 9-1. WLAN Connect Command

9.1.2.4 Limitations

There is no command to bind a certificate file to a WLAN enterprise connection. The certificates of the
network must be programmed with the names specified in Section 9.1.2.2.

9.2 Secured Socket
9.2.1 General Description
SSL is a secured socket over TCP that lets the user connect to servers (and Internet sites) securely, or to
open a secured server.
This chapter covers how to use the socket with the host driver, and how to generate certificates and keys
for the SSL.
9.2.2 How to Use/ API
sl_Socket(SL_AF_INET, SL_SOCK_STREAM, SL_SEC_SOCKET) — This command opens a secured
socket. The first two parameters are typical TCP socket parameters, and the last parameter enables the
security.
Use any standard BSD commands (sl_Close, sl_Listen, sl_Accept, sl_Bind, sl_SetSockOpt, and so
forth) to open client, open server, change socket parameters, and more.
The BSD commands let the user connect without choosing the SSL method (SSLv3 TLS1.0/1.1/1.2) and
without choosing the connection cipher suit (those two will be negotiated in the SSL handshake).
In client socket, the certificate of the server is not verified until the root CA is used to verify the server.
In server socket, the user must supply the server certificate and private key.
Use the setsockopt command with proprietary options to configure the secured parameters of the socket.
SWRU368-June 2014 Security 47

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Secured Socket www.ti.com

9.2.2.1 Selecting a Method

Use to manually define the SSL method. In CC3100, SSLv3 TLSv 1.0/1.1/1.2 is supported.

SISockSecureMethod method; method.secureMethod = Choose one of the following defines:
+ SL _SO_SEC_METHOD_SSLV3

e SL SO _SEC_METHOD_TLSV1

* SL _SO_SEC_METHOD_TLSV1 1

* SL _SO_SEC_METHOD_TLSV1_2

« SL SO SEC_METHOD_SSLv3 TLSV1 2
S1_SetSockOpt(socklID, SL_SOL_SOCKET, SL_SO_SECMETHOD, &amp;method, sizeof(SISockSecureMethod));

9.2.2.2 Selecting a Cipher Suit

Use to manually define the SSL connection and handshake security algorithms, also known as cipher
suits.

SISockSecureMask Mask; mask.secureMask = Choose logic or between the following:

« SL_SEC_MASK SSL_RSA WITH_RC4 128 SHA

» SL_SEC_MASK_SSL_RSA_WITH_RC4_ 128 MD5

e SL SEC_MASK_TLS RSA WITH_AES_256_CBC_SHA

+ SL _SEC_MASK_TLS DHE_RSA_WITH_AES_256_CBC_SHA

* SL_SEC_MASK_TLS ECDHE_RSA_WITH_AES_256_CBC_SHA

* SL_SEC_MASK_TLS_ECDHE_RSA_WITH_RC4_128_SHA

e SL_SEC_MASK_SECURE_DEFAULT
SI1_SetSockOpt(socklID, SL_SOL_SOCKET, SL_SO_SECMETHOD, &amp;mask, sizeof(SISockSecureMask));

9.2.2.3 Selecting the Secured Files for the Socket

Defines which files the socket will use for the connection. There are four files that can be attached to a
socket:

* Private Key
e Certificate

* Root CA

» DHfile

These are the files in client and server sockets:

Client

» Private Key, Certificate — If a client must be authenticated by the server, both private key and
certificate are mandatory together. Use two setsockopt commands to configure each file.

 Root CA — This is the root certificate authority that issued the server certificate and is used to validate
that the server is authentic. This file is not mandatory. If the server is not verified, the connection
occurs, but the connect command returns an error, SL_ ESECSNOVERIFY. This error can be ignored
as it is only a warning for an unauthenticated connection.

* DH file — No use in client

Server
* Private Key, Certificate — Mandatory for server

* Root CA - The certificate issued to the client. When file is set, it obligates the client to send their
certificate for client authentication.

» DH file — Used to support the DH cipher suit — TLS_DHE_RSA WITH_AES 256 CBC_SHA.

To bind files to a socket, program the file to the device. Then use the setsockopt to enter the file name.
All secured files must be in DER format.

48

Security SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Secured Socket

Setsockopt options for the secured files:

e SL_SO_SECURE_FILES_PRIVATE_KEY_FILE_NAME
+ SL SO _SECURE_FILES CERTIFICATE_FILE_NAME
e SL_SO_SECURE_FILES_CA FILE_NAME

e SL_SO_SECURE_FILES_DH_KEY_FILE_NAME

For example, use the file rootCA.der that is in the device:
SI_SetSockOpt(socklID, SL_SOL_SOCKET, SL_SO_SECURE_FILES_CA_FILE_NAME,”rootCA.der”,
strlen(“rootCA.der”));

Note the strlen in the setsockopt, and not sizeof.

9.2.3 Example of Using the SSL

int CreateConnection(unsigned long DestinationlP)

{
int Status;
SI1SockAddrin_t Addr;
int AddrSize;
int SockID = 0;
SITimeval_t timeval;
Addr.sin_family = SL_AF_INET;
Addr.sin_port = sl_Htons(443); // secured connection
Addr.sin_addr.s_addr = sl_Htonl(DestinationlP);

AddrSize = sizeof(SI1SockAddrin_t);
SockID = sl_Socket(SL_AF_INET,
SL_SOCK_STREAM,
SL_SEC_SOCKET);
if( SocklID < 0 )
{
// error
while (1);
}

SI1_SetSockOpt(socklD,
SL_SOL_SOCKET,
SL_SO_SECURE_FILES_CA_FILE_NAME,
”rootCA.der”,
strlen(“rootCA.der™));

Status = sl_Connect(SocklID,
( SI1SockAddr_t *) &amp;Addr,
AddrSize);

if( Status < 0 &amp;&amp; Status != SL_ESECSNOVERIFY )

{
// error
while(1);
b
return SocklID;
}
SWRU368-June 2014 Security 49

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Secured Socket

13 TEXAS
INSTRUMENTS

www.ti.com

9.2.4 Supported Cryptographic Algorithms

Table 9-1. Supported Cryptographic Algorithms

Cryptographic Algorithms Standard Protocol Purpose Length of Encryption Key

RC4 WEP, TKIP Data encryption 128 bits
AES WPA2 Data encryption, authentication 256 bits
DES - Data encryption 56 bits
3DES - Data encryption 56 bits
SHA1L EAP-SSL/TLS Authentication 160 bits
MD5 EAP-SSL/TLS Authentication 128 bits
RSA EAP-SSL/TLS Authentication 2048 bhits
DHE EAP-SSL/TLS Authentication 2048 bhits

ECDHE EAP-SSL/TLS Authentication 160 bits

9.3 File System Security
SimpleLink uses an advanced file system to store data on the serial flash memory. This file system
supports advanced security aspects like data encryption and certificate for file authentication.
The primary security features supported are:
e Secured FAT — The file system table used by SimpleLink is encrypted and signed.
e Secured system files — The most important networking files are encrypted and signed. For more
detailed information, see Section 14.5, under the Chapter 14.
» Tokens — The file system has a token mechanism created upon file creation, providing the only
allowed operation to the file creator. For more detailed information, see Section 14.8, under
Chapter 14.
e Signature & Certificates — Secure files can be created with a signature. For more detailed
information, see Section 14.9, under Chapter 14.
» Security Alert — The file system will lock when identifying an attempt to access the file system without
permission. For more detailed information, see Section 14.7, under Chapter 14.
For more detailed information on the file system and specifically the file system security features, see
Chapter 14.
50 Security SWRU368-June 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

i TEXAS Chapter 10
SWRU368-June 2014
INSTRUMENTS

AP Mode
Topic Page

O R 1= Y=Y = LI D =TS o] ] o o] I PPN 52

10.2  Setting AP MOAE — APl ...ttt et et n e e nans 52

10.3 WLAN Parameters Configuration — APl .......ue it eee e e eaeeneaeens 52

10.4 WLAN Parameters QUErY — APl ... . i e 56

10.5 AP Network Configuration ..........c.ceeieieiiiei ettt e et e e et e e e e e e ananenas 54

10.6 DHCP Server ConfigUration ......ueeeuieieieieeeeneeeeeeaeaseneeeeaeaeaensnaaeeanaeesnenaearaenens 54

10.7  Setting DEVICE URN L..iiiiiiiiiiiitii ettt et e et et e e e et et a e a e e et e s e nsa e e eeanananas 55

10.8 Asynchronous Events Sent t0 the HOSt ....cvieieieiiiiiiiiieee e et ee e 55

0N T = 1 1 0] L= @ Lo = 56
SWRU368-June 2014 AP Mode 51

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

General Description www.ti.com

10.1 General Description

AP (access point) should be set and configured by calling APIs. This chapter describes the parameters
that can be configured and how to configure them.

10.2 Setting AP Mode — API

sl_WlanSetMode(const unsigned char mode)

Where mode should be ROLE_AP (2).
Note: This change will take affect after reset.

10.3 WLAN Parameters Configuration — API

sl_WlanCfgSet (unsigned short Configld,
unsigned short ConfigOpt,
unsigned short ConfiglLen,
unsigned char *pValues)

This function sets the user parameter to configure. The input parameters are:

+ Configld — Should be set to SL_WLAN_CFG_AP_ID (0) or SL_ WLAN_CFG_GENERAL_PARAM_ID
(1), according to the parameter

» ConfigOpt — Identifies the parameter to configure
e ConfigLen — Should be the parameter size in bytes
e pValues — Pointer to memory containing the parameter

Note: This change will take affect after reset.

Table 10-1 describes how to configure each parameter.

Table 10-1. WLAN Parameters

Parameter Description Configld ConfigOpt ConfigLen

Service set identifier
(SSID) - a 1- to 32-byte
string, commonly called

the "network name".
SSID Default: Composed from SL—WLANTOC)FG—AP—ID
the device URN and last

6 digits of the MAC
Address. For example —
mysimplelink-112233.

The time interval
between beacon
transmissions. Range: | SL_WLAN_CFG_AP_ID
15 <= interval <= 65,535 0)
milliseconds.
Default value: 100.

Operational channel for
the AP. The range
depends on the country

code. SL_WLAN_CFG_AP_ID
Channel Range: - fO) - =
usS: 1-11
JP: 1-14
EU: 1-13
Default value: 6

Whether to NOT
broadcast the SSID
SSID Hidden inside the Beacon

frame.
Default value: Disabled

0 1-32

Beacon interval

SL_WLAN_CFG_AP_ID
(0)

52 AP Mode SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

WLAN Parameters Query — API

Table 10-1. WLAN Parameters (continued)

Parameter

Description

Configld

ConfigOpt

ConfigLen

DTIM

Indicates the interval of
the Delivery Traffic
Indication Message

(DTIM). A DTIM field is

a countdown field
informing clients of the
next window for listening
to broadcast and
multicast messages.
DTIM field is in the
Beacon frame.
Range: DTIM >0
Default value: 2

SL_WLAN_CFG_AP_ID
(0)

Security Type

Security mode for the
network.
Range: Open (no
security) / WEP / WPA
Default: Open

SL_WLAN_CFG_AP_ID
(0)

Password

Password to use for the
network in case Security
Type is not open.
Password should be
human-readable string.
For WEP it should be 5
to 13 characters. For
WPA it should be 8 to
63 characters.

SL_WLAN_CFG_AP_ID
(0)

5-63

WPS State

Wi-Fi Protected Setup
(originally Wi-Fi Simple
Config) is a network
security standard that
lets users easily secure
a wireless home
network.
Default value: Disabled

SL_WLAN_CFG_AP_ID
0)

Country code

Identifies the country
code of the AP. Possible
values are US (USA) or

JP (Japan) or EU
(Europe).
Default value is “US”.

SL_WLAN_CFG_GENE
RAL_PARAM_ID (1)

AP TX Power

AP transmission power.
Range: 0 (maximal) — 15
(minimal).
Default: 0 (maximal TX
power).

SL_WLAN_CFG_GENE
RAL_PARAM_ID (1)

11

10.4 WLAN Parameters Query — API

sl_WlanCfgGet(unsigned short Configld,
unsigned short *pConfigOpt,

unsigned short *pConfiglLen,

unsigned char *pValues)

This function gets the parameter the user requested where:

Configld — Should be set to SL_WLAN_CFG_AP_ID (0) or SL_WLAN_CFG_GENERAL_PARAM_ID
(1) as in the SET function

ConfigOpt — Identifies the parameter to configure. Should be the address of the field. The value of the

field is the same as in the SET function.

ConfigLen — Output: pointer to the parameter size returned in bytes

pValues — Output: pointer to memory containing the parameter

SWRU368—-June 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

AP Mode 53


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

AP Network Configuration www.ti.com

10.5

10.6

AP Network Configuration

The user must set the AP IP parameters, specifically the IP address, gateway address, DNS address, and
network mask.

To set the IP addresses call:

sl_NetCfgSet( unsigned char Configld ,
unsigned char ConfigOpt,
unsigned char ConfiglLen,
unsigned char *pValues)

Configld — Should be set to SL_IPV4_AP_P2P_GO_STATIC_ENABLE (7)
ConfigOpt — Should be set to 1

ConfigLen — Should be the parameter size in bytes

pValues — Pointer to memory containing the parameter

This example shows how to configure IP, gateway and DNS addresses to 9.8.7.6 and the subnet to
255.255.255.0:

_NetCfglpV4Args_t ipVv4;

ipv4.ipv4a = 0x09080706;

ipV4.ipV4Mask = OXFFFFFFOO;
ipV4.ipV4Gateway = 0x09080706;
ipV4._ipv4DnsServer = 0x09080706;

sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE,
1

,sizeof(_NetCfglpV4Args_t),

(unsigned char *)

&amp;ipV4);

Note: The changes will take affect after reset.
Default values:

ipV4 = 0xc0a80101; /* 192.168.1.1 */
defaultGatewayV4 = 0xc0a80101; /* 192.168.1.1 */
ipv4DnsServer = 0xc0a80101; /* 192.168.1.1 */
subnetV4 = OxFFFFFFOQO; /* 255.255.255.0 */

DHCP Server Configuration

The user must enable the DHCP server and configure DHCP server parameters, DHCP addresses, and
lease time.

To start the DHCP server call:
s1_NetAppStart(SL_NET_APP_DHCP_SERVER_ID);

Where SL_NET_APP_DHCP_SERVER_ID is 2.

To stop DHCP server call:
s1_NetAppStop(SL_NET_APP_DHCP_SERVER_ID);
Default value: DHCP server enabled.

To configure the DHCP parameters use the following API:

sl_NetAppSet( unsigned char Appld ,
unsigned char Option,

unsigned char OptionLen,

unsigned char *pOptionValue)

Appld — Should be set to SL_NET_APP_DHCP_SERVER_ID (2)
Option — Should be set to NETAPP_SET_DHCP_SRV_BASIC_OPT (0)

54

AP Mode SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

www.ti.com

TEXAS

INSTRUMENTS

Setting Device URN

10.7

10.8

OptionLen — Should be the parameter size in bytes
pOptionValue — Pointer to memory containing the parameter

This example shows how to configure the parameters (starting IP address 9.8.7.1, ending IP address
9.8.7.5, lease time = 1000 seconds):

SINetAppDhcpServerBasicOpt_t dhcpParams;

unsigned char outLen = sizeof(SINetAppDhcpServerBasicOpt_t);
dhcpParams. lease_time = 1000;
dhcpParams. ipv4_addr_start = 0x09080701;

dhcpParams. ipv4_addr_last = 0x09080705;

sl_NetAppSet(SL_NET_APP_DHCP_SERVER_ID,
NETAPP_SET DHCP_SRV_BASIC_OPT,

outLen,

(unsigned char¥®)

&amp ; dhcpParams) ;

Default value:

lease_time = 24 * 3600; /* 24 hours */
ipv4_addr_start = 0xc0a80102; /* 192.168.1.2 */
ipv4_addr_last = Oxc0a801fe; /* 192.168.1.254 */

Note: The DHCP server addresses must be in the subnet of the AP IP address. The changes will take
affect after reset.

Setting Device URN

To set the device name call:

sl_NetAppSet (SL_NET_APP_DEVICE_CONFIG_ID,
NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN,
strlen(device_urn),

(unsigned char *) device_urn);

Where SL_NET_APP_DEVICE_CONFIG_ID = 16
NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN =0

Default value: mysimplelink

Asynchronous Events Sent to the Host

When a station is newly connected or disconnected to or from the AP, an event is sent to the host.
The event opcodes are:

SL_OPCODE_WLAN_STA CONNECTED 0x082E

SL_OPCODE_WLAN_STA_DISCONNECTED 0x082F

The events include the following parameters:

Table 10-2. Event Parameters

Parameter Bytes Remarks

Peer device name 32 Relevant for P2P

Peer MAC address

Peer device name length

WPS device password ID 1 0 — not available

Own SSID 32 Relevant for P2P

Own SSID length 1

SWRU368-June 2014 AP Mode
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

55


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Example Code www.ti.com

Table 10-2. Event Parameters (continued)

Parameter Bytes Remarks
Padding 3

When the IP address is released to a station, an event is sent to the host.
The event opcode is:

SL_OPCODE_NETAPP_IP_LEASED 0x 182C

The event includes the following parameters:

Table 10-3. Event Parameters

Parameter Bytes Remarks
IP address 4
Lease time 4 In seconds
Peer MAC address 6
Padding 2

When an IP address is released by a station, an event is sent to the host.
The event opcode is:

SL_OPCODE_NETAPP_IP_RELEASED 0x 182D
The event includes the following parameters:

Table 10-4. Event Parameters

Parameter Bytes Remarks
IP address 4
Peer MAC address 6

0 — peer released the IP address
Reason 2 1 — peer declined to this IP address
2 — Lease time was expired

10.9 Example Code

An example code showing how to configure the AP WLAN parameters and network parameters (IP
addresses and DHCP parameters) follows. WLAN parameters are also read back.
int mainQ)
{
int SocklD;
unsigned char outLen = sizeof(SINetAppDhcpServerBasicOpt_t);

unsigned char channel, hidden, dtim, sec_type, wps_state, ssid[32],
password[65], country[3];

unsigned short beacon_int, config_opt, config_len;

SINetAppDhcpServerBasicOpt_t dhcpParams;

_NetCfglpV4Args_t ipV4;

sl_Start(NULL, NULL, NULL);
Sleep(100);

// Set AP IP params

ipv4._ipv4 = SL_IPV4 VAL(192,168,1,1);
ipV4._ipv4Gateway = SL_IPV4 VAL(192,168,1,1);
ipV4.ipv4DnsServer = SL_IPV4_VAL(192,168,1,1);

56 AP Mode SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Example Code

ipV4. ipvaMask = SL_IPV4_VAL(255,255,255,0);

sl_NetCfgSet( SL_IPV4_AP_P2P_GO_STATIC_ENABLE,
1
,sizeof(_NetCfglpV4Args_t),
(unsigned char *)
&amp;ipV4);

//Set AP mode

sl_WlanSetMode (ROLE_AP);

//Set AP SSID

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SSID, strlen(‘'cc_ap_testl"),
(unsigned char *)"cc_ap_testl");

//Set AP country code

sl_WlanSet(SL_WLAN_CFG_GENERAL_PARAM_ID,
WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE, 2, (unsigned char *)"US");

//Set AP Beacon interval

beacon_int = 100;

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_BEACON_INT, 2, (unsigned char
)
&amp;beacon_int);

//Set AP channel

channel = 8;

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_CHANNEL, 1, (unsigned char
*
)
&amp;channel);

//Set AP hidden/broadcast configuraion

hidden = 0;

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_HIDDEN_SSID, 1, (unsigned char
&amp;hidden);

//Set AP DTIM period

dtim = 2;

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_DTIM_PERIOD, 1, (unsigned char
)
&amp;dtim);

//Set AP security to WPA and password

sec_type = SL_SEC_TYPE_WPA;

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SECURITY_TYPE, 1, (unsigned
char *)
&amp;sec_type);

sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_PASSWORD,
strilen("'password123'), (unsigned char *)"passwordl123'");

sl_Stop(100);
sl_Start(NULL, NULL, NULL);

//Retrive all params to confirm setting

//Get AP SSID
sendLog( AP parameters \n"");
config_opt = WLAN_AP_OPT_SSID;
config_len = MAXIMAL_SSID_LENGTH;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt , &amp;config_len, (unsigned
char*) ssid);
sendLog(*'SSID: %s\n",ssid);
//Get AP country code
config_opt = WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE;
config_len = 3;
sl_WlanGet(SL_WLAN_CFG_GENERAL_PARAM_ID,
&amp;config_opt, &amp;config_len,
(unsigned char*) country);
sendLog(*'Country code: %s\n',country);

SWRU368—-June 2014 AP Mode 57

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Example Code www.ti.com
//Get AP beacon interval
config_opt = WLAN_AP_OPT_BEACON_INT;
config_len = 2;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;beacon_int);
sendLog(*'Beacon interval: %d\n",beacon_int);
//Get AP channel
config_opt = WLAN_AP_OPT_CHANNEL;
config_len = 1;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;channel);
sendLog(*'Channel : %d\n",channel);
//Get AP hidden configuraion
config_opt = WLAN_AP_OPT_HIDDEN_SSID;
config_len = 1;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;hidden);
sendLog(*'Hidden: %d\n",hidden);
//Get AP DTIM period
config_opt = WLAN_AP_OPT_DTIM_PERIOD;
config_len = 1;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;dtim);
sendLog("'DTIM period: %d\n",dtim);
//Get AP security type
config_opt = WLAN_AP_OPT_SECURITY_TYPE;
config_len = 1;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;sec_type);
sendLog(*'Security type: %d\n",sec_type);
//Get AP password
config_opt = WLAN_AP_OPT_PASSWORD;
config_len = 64;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char¥)
password) ;
sendLog(*'Password: %s\n'',password);
//Get AP WPS state
config_opt = WLAN_AP_OPT_WPS_STATE;
config_len = 1;
sl_WlanGet(SL_WLAN_CFG_AP_ID,
&amp;config_opt, &amp;config_len, (unsigned char*) &amp;wps_state);
// Set AP DHCP params
//configure dhcp addresses to: 192.168.1.10 - 192.168.1.20, lease time
4096 seconds
dhcpParams. lease_time = 4096;
dhcpParams.ipv4_addr_start = SL_IPV4_VAL(192,168,1,10);
dhcpParams. ipv4_addr_last = SL_IPV4_VAL(192,168,1,20);
outlLen = sizeof(SINetAppDhcpServerBasicOpt_t);
sl_NetAppStop(SL_NET_APP_DHCP_SERVER_ID);
sl_NetAppSet(SL_NET_APP_DHCP_SERVER_ID, NETAPP_SET_DHCP_SRV_BASIC_OPT,
outLen, (unsigned char¥®)
&amp ; dhcpParams) ;
sl_NetAppStart(SL_NET_APP_DHCP_SERVER_ID);
// Get AP DHCP params
sl_NetAppGet(SL_NET_APP_DHCP_SERVER_ID, NETAPP_SET_DHCP_SRV_BASIC_OPT,
&amp;outLen, (unsigned char*)&amp;dhcpParams);
}
58 AP Mode SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

1 Chapter 11
l TEXAS SWRU368-June 2014
INSTRUMENTS
Peer to Peer (P2P)
Topic Page
5 R 1= V=T = T D =T o] o o I PPN 60
11.2 P2P APIS and ConfigUIation ...uuueeeeeieitieieeeeeeetieseeee e eeasssaseeneanenensaeeaeananenanes 61
e B ] N @0 o [ T=To3 o ] T T ) PPN 66
11.4 Use Cases and CoNnfigUIatioN ......coevuieieitiiiiiiiitieaeee e e e es e e resara s eaeeaens 67
3T = T 0] ] (= O o Yo = PP 69

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Peer to Peer (P2P) 59


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

General Description www.ti.com

11.1 General Description

11.1.1 Scope

P2P mode in CC3100 lets the device connect to other devices without the need for an AP by inheriting the
entire station of AP attributes.

11.1.2 Wi-Fi Direct Advantage

* Provides an easy and convenient manner to share, show, print, and synchronize content, whether at
home, in public places, while traveling, or at work.

* Provides new connectivity scenarios that include any Wi-Fi devices the user already owns.
* Eliminates the need for routers and Bluetooth for applications that do not rely on low power.
« Delivers an industry-wide peer-to-peer solution based on broadly deployed Wi-Fi technologies.

» Requires only one of the Wi-Fi devices to be compliant with Wi-Fi Direct to establish a peer-to-peer
connection that transfers data directly between other devices.

» Uses peer-to-peer opportunistic power-save, allowing a low-power link for both group owner and client.

11.1.3 Support and Abilities of Wi-Fi Direct in CC3100

» P2P configuring device name, device type, listen and operation channels
» P2P device discovery (FULL/SOCIAL)

» P2P negotiation with all intents (0 to 15)

» P2P negotiation Initiator policy — Active / Passive / Random Back Off

* P2P WPS method push-buttonand pin code (keypad and display)

* P2P establish as client role:
* P2P device can join an existing P2P group.
» P2P device can invite to reconnect a persistent group (fast-connect).

» P2P establish as group owner role:
» P2P group owner can accept a join request.
* P2P persistent group owner can respond to invite requests.

* P2P group remove

» P2P connect-disconnect-connect transition, also between different roles (for example GO-CL-GO)
» P2P client legacy PS and NoA support

« Separate IP configuration for P2P role

» Separate Net-Apps configuration on top of P2P-CL/GO role

11.1.4 Limitations

 No service discovery supported.
* No GO-NoA supported.

» Smart configuration for P2P device entry is limited to 15 entries, and is dynamically allocated rather than
optimized as a station scan single entry.

» No autonomous group support for the user, although the mode is internally supported and can be
opened to the user.

» P2P group owner mode supports single peer (client) connected (similar to AP).

60

Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com P2P APIs and Configuration

» P2P Find in profile search and connection is infinite, meaning if the remote device is not found the
search will continue indefinitely.

11.2 P2P APIs and Configuration

P2P configuration is done by using the host driver APIs that control the CC3100. Different options and
modes of P2P configuration can be accessed by using specific APIs.

The configuration is divided into these sections:

» Configure P2P global parameters.

» Configure P2P policy.

» Configure P2P profiles policy.

e Configure manual connection.

» Configure a search for P2P devices and use these devices.

* P2P events.

The next section explains how to configure P2P and how to use its options. Note that:
» Configuration is flushed and can be done only once.

* Not all APIs need to be used. Default parameters are used in the absence of a user configuration.
» All set APIs have a GET operation.

11.2.1 Configuring P2P Global Parameters
This section shows how to configure the device to be in a state of P2P and set its general parameters.

11.2.1.1 Set P2P role

Set the device to P2P mode using an API:
sl_WlanSetMode (ROLE_P2P)

This API puts the device in P2P mode. All other P2P configurations will not be effected until entering P2P
mode.

11.2.1.2 Set P2P Network Configuration

Configure network configuration used by the P2P API:
e P2P client (same API as station):
— Static IP:

sl_NetCfgSet(SL_IPV4_STA P2P_CL_STATIC_ENABLE,1, sizeof(_NetCfglpV4Args_t), (unsigned char
*)&amp; ipVv4)

— DHCP client:

sl_NetCfgSet(SL_IPV4_STA P2P_CL_DHCP_ENABLE,1,1,&amp;val);
* P2P GO (same API as AP):
— GO own static IP:

sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE,1, sizeof(_NetCfglpV4Args_t), (unsigned char
*)&amp;ipV4)

This API sets the network configuration used when the P2P role is set.

11.2.1.3 Set P2P Device Name

The following macro sets the P2P device name. Setting a unique P2P device name for every individual
device is necessary, because the connection is based on device-name.

Default: TI_SIMPLELINK_P2P_xx (xx = random two characters)
API:

SWRU368-June 2014 Peer to Peer (P2P) 61

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

P2P APIs and Configuration www.ti.com

sl_NetAppSet (SL_NET_APP_DEVICE_CONFIG_ID,
NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN,
strlen(device_name),

(unsigned char *) device_name);

11.2.1.4 Set P2P Device Type

The following macro sets the P2P device type. The device type allows P2P discovery parameters to
recognize the device.

Default: 1-0050F204-1

API:

sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID,
WLAN_P2P_OPT_DEV_TYPE,
dev_type_len, dev_type);

11.2.1.5 Set P2P Listen and Operation Channels

The following macro sets the P2P operation and listen channels. The listen channel is used for the
discovery state and can be 1, 6, or 11. The device will be in this channel when waiting for P2P probe
requests. The operation channel is used only by the GO. The GO will move to this channel after the
negotiation phase.

Default: Random between channels 1,6, or 11

API:
sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, WLAN_P2P_OPT_CHANNEL_N_REGS, 4, channels);

Note: Regulator domain class should be 81 in 2.4G.

For example:

unsigned char channels [4];

channels [0] (unsigned char)11l; // listen channel

channels [1] (unsigned char)81; // listen regulatory class

channels [2] (unsigned char)6; // oper channel

channels [3] (unsigned char)81; // oper regulatory class
sl_WlanSet(SL_WLAN_CFG_P2P_PARAM_ID, WLAN_P2P_OPT_CHANNEL_N_REGS, 4, channels);

11.2.2 Configuring P2P Policy

This section depicts the P2P policy configuration, including two more P2P working mode options given by
the CC3100.

» P2P intent value option — The P2P role of the device (client, GO, or don't care).

« Negotiation initiator option — Value used during P2P negotiation to indicate which side will initiate the
negotiation, and which side will passively wait for the remote side to send negotiation and then
respond.

11.2.2.1 Configure P2P Intent Value and Negotiation Initiator

This configuration uses macro SL_P2P_POLICY, the second parameters sent to function
sl_WlanPolicySet. For the intent value, three defines options can be used:

e 1SL_P2P_ROLE_CLIENT (intent 0): Indicates that the device is forced to be P2P client.

« SL_P2P_ROLE_NEGOTIATE (intent 7): Indicates that the device can be either P2P client or GO,
depending on the P2P negotiation tie-breaker. This is the system default.

e SL_P2P_ROLE_GROUP_OWNER (intent 15): Indicates that the device is forced to be P2P GO.

For negotiation initiator, three defines options can be used:
e SL_P2P_NEG_INITIATOR_ACTIVE: When the remote peer is found after discovery, the device
immediately sends negotiation requests to the peer device.

e SL _P2P_NEG_INITIATOR_PASSIVE: When the remote peer is found after discovery, the device
passively waits for the peer to start the negotiation before responding.

62

Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com P2P APIs and Configuration

 SL_P2P_NEG_INITIATOR_RAND_BACKOFF: When the remote peer is found after discovery, the
device triggers a random timer (1 to 7 seconds). The device waits passively for the peer to negotiate
during this period. If the timer expires without negotiation, the device immediately sends negotiation
requests to the peer device. This is the system default as two CC3100 devices do not require any
negotiation synchronization.

This configuration should be used when working with two CC3100 devices. The user may not have a GUI
to start the negotiation, thus this option is offered to prevent the simultaneous negotiation of both devices
after discovery.

API:
sl_WlanPolicySet(SL_POLICY_P2P,

SL_P2P_POLICY(Intent value, negotiation initiator)//macro,
&amp;policyval,

0

):
For example:
sl_WlanPolicySet(SL_POLICY_P2P,

SL_P2P_POLICY(SL_P2P_ROLE_NEGOTIATE,
SL_P2P_NEG_INITIATOR_RAND_BACKOFF

) //macro,
&amp;policyval,

11.2.3 Configuring P2P Profile Connection Policy

This section discusses the profile connection policy. This policy lets the system connect to a peer without
a reset or disconnect operation by the remote peer.

The mechanism describes how the device uses these profiles in relation to P2P automatic connection.

This configuration uses the macro SL_CONNECTION_POLICY, the second parameter sent to function
sl_WlanPolicySet.

There are four connection policy options:

» Auto Start — As in STA mode, if the device is not connected it starts P2P find to search for all P2P
profiles configured on the device. If at least one candidate is found, the device tries to connect to it. If
more than one device is found, the best candidate according to the profiles parameter is chosen.

» Fast Connect — This option creates a fast connection after reset, but is dependant on the last
connection state. This option has no meaning if no previous connection was performed by the device,
because only the last connection parameters are used by the fast-connection option.

— If the device was a P2P client in its last connection (before a reset or remote disconnect operation),
then following reset it will send a p2p_invite to the previously connected GO to perform fast-
reconnection.

— If the device was P2P GO in its last connection (before reset or remote disconnect operation), then
following reset it will reinvoke the p2p_group_owner and wait for the previous connected peer to
reconnect.

e OpenAP — Not relevant for P2P mode

» AnyP2P policy — Policy value that makes a connection to any P2P peer device found during
discovery. This option does not need a profile. Relevant for negotiation with push-button only.

Each option should be sent or set in this macro as true or false. More than one option can be used; for
example, the user can set both the auto-start and the fast connect options to true.
API:

sl_WlanPolicySet(SL_POLICY_P2P,
SL_CONNECTION_POLICY(auto start, fast connect,openAp,AnyP2p)

//macro,
&amp;policyval,
0
):
SWRU368-June 2014 Peer to Peer (P2P) 63

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

P2P APIs and Configuration www.ti.com

For example:
sl_WlanPolicySet(SL_POLICY_P2P,

SL_CONNECTION_POLICY(true, true, false, false) //macro,
&amp;policyval,
0
)N
11.2.4 Discovering Remote P2P Peers

This section shows how to start a P2P search and discovery, and how to see the remote P2P devices that
are discovered. Discovery is used for:

e Scan and find nearby devices, because P2P connection is based on the remote device name
published during discovery phase

» Manually connect by host commands (not using existing profiles)

» Discover the remote peers in the neighborhood and then configure willing profiles, if the neighborhood
is unknown and the user wants to set P2P profiles in the system.

11.2.4.1 How to Start P2P Discovery

A scan policy is needed to start the P2P find and discover remote P2P peers. Setting the scan policy to
P2P performs a full P2P scan.

The setting of the scan policy should be under the P2P role. P2P discovery is performed as part of any
connection, but can also be activated using the SCAN_POLICY.

API:
SL_WlanPolicySet(SL_POLICY_SCAN, 1 /*enable scan*/, interval, 0)

The second parameter enables the P2P scan operation, and the interval indicates the waiting time
between P2P find cycles.

11.2.4.2 How to See/Get P2P Remote Peers (Network P2P List)

There are two ways to see and get P2P remote devices discovered during a P2P find and search
operation:

« Listening to the event SL_WLAN_P2P_DEV_FOUND_EVENT
» Calling to API sl_WIlanGetNetworkList

SL_WLAN_P2P_DEV_FOUND_EVENT: This event is sent to each remote P2P that is found. It contains
the MAC address, the name, and the name's length of the remote device. By listening to this event the
user can find each remote P2P in the neighborhood.

SI_WIlanGetNetworkList: By calling to this API the user gets a list of remote peers found and saved in
the device cache. This API is also used in station mode.

API:

sl_WlanGetNetworkList(unsigned char Index, unsigned char Count,
SI_WlanNetworkEntry_t *pEntries)

Index — Indicates to which index in the list tables the P2P devices will return.
Count - Shows how many peer devices should be returned (if existed).
pEntries — The results are entered in to it. It is allocated by the user.

11.2.5 Negotiation Method

The next sections show how to make a P2P connection manually or automatically by profile, and the
negotiation method before the WPS connection.

64 Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com P2P APIs and Configuration

As stated in Section 11.2.3, the negotiation starts according to the intent and negotiation initiator
parameters, but other parameters should be configured to finish this step successfully. These parameters
influence the negotiation method and are supplied during the manual connection APl command that
comes from the host or when setting the profile for automatic connection. The negotiation method is done
by the device without user interference.

There are two P2P negotiation methods to indicate the WPS phase that follows the negotiation:

» P2P push-button connection — Both sides negotiate with PBC method. Define
SL_SEC_TYPE_P2P_PBC.

e P2P pin code connection — Divided to two options. PIN_DISPLAY looks for a pin to be written by its
remote P2P. PIN_KEYPAD sends a pin code to its remote P2P.

— Define SL_SEC_TYPE_P2P_PIN_KEYPAD.
— Define SL_SEC_TYPE_P2P_ PIN_DISPLAY.
Note: If no pin code is entered, the NWP auto-generates the pin code from the device MAC using the
following method:

1. Take the 7 ISB decimal digits in the device MAC address, and add checksum of those 7 digits to the
LSB (total 8 digits). For example, if MAC is 03:4A:22:3B:FA:42

Convert to decimal: ....:059:250:066
Seven ISB decimal digits are: 9250066
WPS Pin Checksum digit: 2

Default pin code for this MAC: 92500662

There are two options to configure the negotiation method:

e Setting the value in secParams struct and sending it as a parameter through the manual connection
command.

— For push-button: secParams.Type = SL_SEC_TYPE_P2P_PBC

— For pin code keypad: secParams.Type = SL_SEC_TYPE_ PIN_KEYPAD secParams.Key =
12345670

— For pin code diaplay: secParams.Type = SL_SEC_TYPE_ PIN_ DISPLAY secParams.Key =
12345670

» Sending the negotiation method defines and key as parameters through the P2P profile configuration.

akrwn

11.2.6 Manual P2P Connection

After finding a remote device by getting event SL_ WLAN_P2P_DEV_FOUND_EVENT or by calling to
get_networkList API, there is an option to start a connection by using a command originating from the
host. This command performs immediate P2P discovery. Once the remote device is found, the negotiation
phase is started according to the negotiation initiator policy, method, and intent selected.

This connection is not flashed, so in case of disconnection or reset, a reconnection is done only if the fast-
connect policy is on. This connection is stronger than a connection made through profiles, as a P2P
connection already exists in the system. The current connection is disconnected in favor of the manual
connection.

API:

sl_WlanConnect(char* pName, int NamelLen, unsigned char *pMacAddr,
SISecParams_t* pSecParams ,
SISecParamsExt_t* pSecExtParams)

pName — The name of the remote device which is known to the user after getting event
SL_WLAN_P2P_DEV_FOUND_EVENT or by calling to get_networkList API.

NameLen — The length of pName

pMacAddr — The option to connect to a remote P2P according to its BSSID. Use {0,0,0,0,0,0} to connect
according to MAC address.

pSecParams — See Section 11.2.5.

SWRU368-June 2014 Peer to Peer (P2P) 65

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

P2P APIs and Configuration www.ti.com

pSecExtParams — Value should be zero.

For example:
sl_WlanConnect(*'my-tv-p2p-device, 17, {0,0,0,0,0,0},&amp; pSecParams ,0);

11.2.7 Manual P2P Disconnection

A manual disconnect option lets the user make a disconnection from its peer through a host command.
This command performs a P2P group remove of the current active role, whether it is p2p-device, p2p-
group-owner, or p2p-client.

API:

sl_WlanDisconnect();

11.2.8 P2P Profiles

Profile configuration makes an automatic P2P connection after a reset or disconnection from the remote
peer device. This command stores the P2P remote device parameters in flash as a new profile along with
profile priority. These profiles are similar to station profiles and have the same automatic connection
behavior. The connection depends on the profile policy configuration.

If auto-start policy is on, a P2P discovery is performed. If one or more of the remote devices that are
found are adapted to the profiles, a negotiation phase is started according to the negotiation initiator
policy, method, and intent selected. The highest priority profile is chosen.

If fast-connect policy is on and there already was a connection, then after a reset or disconnection from
the remote peer a fast connection starts according to the last connection parameters, without consulting
the P2P profile list. If a manual connection is sent, then the profile connection is stopped by a disconnect
command, and manual connection is initiated.

To add a profile with the push-button negotiation method, call to:

sl_WlanProfileAdd(char* pName, int NameLen, unsigned char *pMacAddr,
SISecParams_t* pSecParams , SlSecParamsExt_t*
pSecExtParams, unsigned long Priority,
unsigned long Options)

An example of adding a profile with the push-button negotiation method:

sl_WlanProfileAdd( SL_SEC_TYPE_P2P_PBC,
remote_p2p_device,
strlen(remote_p2p_device),
bssidEmpty,
0/*Priority*/,0,0,0);

An example of adding a profile with the keypad negotiation method:

sl_WlanProfileAdd( SL_SEC_TYPE_P2P_PIN_ DISPLAY,
remote_p2p_device,
strlen(remote_p2p_device),
bssidEmpty,
0/*Priority*/,key,8/*keylen*/,0);

11.2.9 Removing P2P Profiles

11.3

To delete a specific profile or all profiles use the following API:
sl_WlanProfileDel (profile_index/*WLAN_DEL_ALL_PROFILES for all profiles*/)

P2P Connection Events

This section describes the P2P connection events. These events are sent by the device during connection
and the user decides how to handle them.

«SL_WLAN_P2P_NEG_REQ_RECEIVED_EVENT - This event is sent if the negotiation is ended
successfully. It contains:

» Device peer MAC address

66

Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com Use Cases and Configuration

11.4

» Device peer name
* Length of device peer name
» Device peer WPS password ID

« SL_WLAN_CONNECTION_FAILED_EVENT — This event is sent if the connection fails, with the failure
reason. It contains:

* Failure reason

« SL_WLAN_CONNECT_EVENT - This event is shared by P2P client and station. Indicates that the P2P
connection has ended successfully and that the device is a P2P client. It contains:

* Remote device parameters

« SL_WLAN_CONNECT_EVENT - This event is shared for P2P GO and AP. Indicates that the P2P
connection has ended successfully and that the device is P2P GO. It contains:

* Remote device parameters
» Information about the group owner parameters

Use Cases and Configuration
This section describes common P2P use cases, their meanings, and how to configure them.

11.4.1 Case 1 — Nailed P2P Client Low-Power Profile

Device is a P2P client by automatic connection, using fast connection after each reset or disconnection.
The device stores the parameters of the last connection.

At least one profile should be configured in the system.
On fast connect, add the device to P2P supplicant to avoid find.
Send P2P-Invite to remote persistent GO with network parameters.

Note: In case fast connection failed, fall back to profile P2P find and perform the regular connection
method (join or full negotiation).

1. Configure P2P global parameters.

2. Configure P2P profile policy with SL_P2P_ROLE_CLIENT (intent 0), and with
SL_P2P_NEG_INITIATOR_RAND_BACKOFF (negotiation initiator don't care).
SL_P2P_POLICY(SL_P2P_ROLE_CLIENT, SL_P2P_NEG_INITIATOR_RAND_BACKOFF)

3. Configure P2P profile policy connection with auto-start and fast connection.
SL_CONNECTION_POLICY(true, true, false, false)

4. Configure P2P profile according to the willing parameters of the remote device such as nhame, MAC
address, and so forth.

5. If the peer parameters are unknown, operate a discover P2P operation, find P2P peers, and then
configure profiles.

11.4.2 Case 2 — Mobile Client Low-Power Profile

Device is a P2P client by automatic connection, with no fast connection after each reset or disconnection.
The device does not store the parameters of the last connection.

At least one profile should be configured in the system.

As in the first case, perform a profile P2P find with stored networks, examine the results and send a
negotiation request according to remote device GO capabilities (group owner).

1. Configure P2P global parameters.

2. Configure P2P profile policy with SL_P2P_ROLE_CLIENT (intent 0), and with
SL_P2P_NEG_INITIATOR_RAND_BACKOFF (negotiation initiator don't care).
SL_P2P_POLICY(SL_P2P_ROLE_CLIENT, SL_P2P_NEG_INITIATOR_RAND_BACKOFF)

SWRU368-June 2014 Peer to Peer (P2P) 67
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Use Cases and Configuration www.ti.com
3. Configure P2P profile policy connection with auto-start and fast connection.
SL_CONNECTION_POLICY(true, false, false, false)
4. Configure P2P profile according to the willing parameters of the remote device such as name, MAC
address, and so forth
5. If the peer parameters are unknown, operate a discover P2P operation, find P2P peers, and then

configure profiles.

11.4.3 Case 3 — Nailed Center Plugged-in Profile

Device is a P2P GO by automatic connection, with fast connection after each reset or disconnection. The
device stores the parameters of the last connection.

At least one profile should be configured in the system.

HARD RESET ONLY — Launch Group (as GO) with previous persistent network parameters stored in
fast-connect, set WPS method and set timer.

PEER DISCONNECT - Set WPS method and set timer.
WPS timer expired with no peers connected — Tear down group, go back and perform a profile P2P

find with stored network. Examine the results and initiate a negotiation request with the policy
parameters (negotiate with intent = 15 results as GO).

Configure P2P global parameters.

Configure P2P profile policy with SL_P2P_ROLE_GROUP_OWNER (intent 15), and with
SL_P2P_NEG_INITIATOR_RAND_BACKOFF (negotiation initiator don't care).
SL_P2P_POLICY(SL_P2P_ROLE_GO, SL_P2P_NEG_INITIATOR_RAND_BACKOFF)

Configure P2P profile policy connection with auto-start and fast connection.
SL_CONNECTION_POLICY(true, true, false, false)

Configure P2P profile according to the willing parameters of the remote device such as name, MAC
address, and so forth.

If the peer parameters are unknown, operate a discover P2P operation, find P2P peers, and then
configure profiles.

11.4.4 Case 4 — Mobile Center Profile

Perform a group formation and launch as GO (nonpersistent) by automatic connection with no fast
connection after each reset or disconnection. The device does not store the parameters of the last
connection. At least one profile should be configured in the system.

DISCONNECT - Tear down the group immediately.
Hard reset or after tearing down — Perform a profile P2P find with the stored network, examine the

results and initiate a negotiation request with the policy parameters (negotiate with intent = 15 results
as GO).

Configure P2P global parameters.

Configure P2P profile policy with SL_P2P_ROLE_GROUP_OWNER (intent 15), and with
SL_P2P_NEG_INITIATOR_RAND_BACKOFF (negotiation initiator don't care).
SL_P2P_POLICY(SL_P2P_ROLE_GO, SL_P2P_NEG_INITIATOR_RAND_BACKOFF)

Configure P2P profile policy connection with auto-start and fast connection.
SL_CONNECTION_POLICY(true, false, false, false)

Configure P2P profile according to the willing parameters of the remote device such as hame, MAC
address, and so forth.

If the peer parameters are unknown, operate a discover P2P operation, find P2P peers, and then
configure profiles.

11.4.5 Case 5 - Mobile General-Purpose Profile

Perform a group formation and launch as GO (nonpersistent) or CL, without storing any parameter. At
least one profile should be configured in the system.

68 Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com Example Code

115

» DISCONNECT - If GO, then tear down the group immediately.

» Hard reset or after tearing down — Perform a profile P2P find with the stored network, examine the
results and initiate a negotiation request with the policy parameters (negotiate with intent = 7 results as
GO or CL).

1. Configure P2P global parameters.

2. Configure P2P profile policy with SL_P2P_ROLE_NEGOTIATE (intent 7), and with
SL_P2P_NEG_INITIATOR_RAND_BACKOFF (negotiation initiator don't care).
SL_P2P_POLICY(SL_P2P_ROLE_GO, SL_P2P_NEG_INITIATOR_RAND_BACKOFF)

3. Configure P2P profile policy connection with auto-start and fast connection.
SL_CONNECTION_POLICY(true, false, false, false)

4. Configure P2P profile according to the willing parameters of the remote device such as name, MAC
address, and so forth.

5. If the peer parameters are unknown, operate a discover P2P operation, find P2P peers, and then
configure profiles.

Example Code

The following is sample code of a simple profile connection, configuring the device to act as a P2P client
device using a profile connection with a known remote GO device name (without MAC), using push-button
method.

unsigned char val = 1;

unsigned char policyVval;

unsigned char my_p2p_device[33];

unsigned char *remote_p2p_device = "Remote_GO_Device_ XX";

unsigned char bssidEmpty[6] = {0,0,0,0,0,0};

sl_Start(NULL, NULL, NULL);

//Set P2P as active role

sl_WlanSetMode (3/*P2P_ROLE*/);

//5et P2P client dhcp enable (assuming remote GO running DHCP server)

sl_NetCfgSet(SL_IPV4_STA P2P_CL_DHCP_ENABLE,1,1,

&amp;val);

//Set Device Name

strcpy(my_p2p_device,"jacky_sl_p2p_device™);

sl_NetAppSet (SL_NET_APP_DEVICE_CONFIG_ID,
NETAPP_SET_GET_DEV_CONF_OPT_DEVICE_URN, strlen(my_p2p_device),

(unsigned char *) my_p2p_device);

//set connection policy Auto-Connect
sl_WlanPolicySet( SL_POLICY_CONNECTION,
SL_CONNECTION_POLICY(1/*Auto*/ ,0/*Fast*/,
0/*0penAP*/,0/*AnyP2P*/),
&amp;policyval, 0 /*PolicyvallLen*/

)N

//set P2P Policy - intent 0, random backoff
sl_WlanPolicySet( SL_POLICY_P2P,
SL_P2P_POLICY(SL_P2P_ROLE_CLIENT/*Intent 0 - Client*/,
SL_P2P_NEG_INITIATOR_RAND_BACKOFF/*Negotiation initiator — random backoff*/),
&amp;policyval,0 /*PolicyVallLen*/
):

sl_WlanProfileAdd(
SL_SEC_TYPE_P2P_PBC,
remote_p2p_device,
strlen(remote_p2p_device),
bssidEmpty,
0, //unsigned long Priority,
0,//unsigned char  *pKey,
0,//unsigned long KeyLen,
0//unsigned long Options)
)N

SWRU368-June 2014 Peer to Peer (P2P) 69
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Example Code www.ti.com
sl_Stop(1);
sl_Start(NULL, NULL, NULL);
70 Peer to Peer (P2P) SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

i TEXAS Chapter 12
SWRU368-June 2014
INSTRUMENTS

HTTP Server

Topic Page
2 R @ Y= = P 72
12,2 HTTP GET PrOCESSING tuututueutititiuteetatinestaeeettaestasneetaeassssaesasanesessneneneananensnes 73
12.3 HTTP POST PrOCESSING eutuutitieutueeieitieeaen et ataeaaaee e aeaeeasa e e e e saenraaeanaeenns 74
12.4  Internal WED Page ....cciieieieiiiiiiii ettt e e e e e e s e e e e 76
12.5 FOrce AP MOOE SUPPOIT . ..unet ettt it e ettt e et et e e e a e e e et e eaeaseneaeeanenannn 76
12.6 AcCCESSING the WED Page......v ittt ettt e e e e e e e e e e e e e eenees 76
12.7 HTTP Authentication CheCK........cciiiieiii ittt e e ns 77
12.8 Handling HTTP Events in Host Using the SimpleLink Driver......ccccecvviiiieieieneinnnnnnn. 77
12.9 SimpleLink Driver Interface the HTTP Web Server........coooiiiiiiiiiiiiiiieiieeeeenes 79
12.10 SimpleLink Predefined TOKENS ....ccuininieiiiiiiii et e e 83

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

HTTP Server 71


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Overview www.ti.com

12.1 Overview

The HTTP web server allows end-users to remotely communicate with the SimpleLink device using a
standard web browser.

The HTTP web server enables the following functions:

» Device configuration

» Device status and diagnostic

« Application-specific functionality

HTTP stands for Hypertext Transfer Protocol. HTTP is a client/server protocol used to deliver hypertext

resources (HTML web pages, images, query results, and so forth) to the client side. HTTP works on top of
a predefined TCP/IP socket, usually port 80.

GET /page.html HTTP/1.0
Host: host_name

&

Page.html

HTTR/1.0 200 OK
Content-type: text/htm|

<htmil> ...

Figure 12-1. HTTP GET Request

The SimpleLink HTTP server handles the HTTP request. The server listens on the HTTP socket (default is
80). According to the request type, such as HTTP GET or HTTP POST, the server handles the request
URI resource and content. The server then composes a correct HTTP response and returns it to the client.

The SimpleLink server communicates with the serial flash file system, which hosts the web page files. The
files are saved in the serial flash under their own filename. Filenames can include the full path to achieve
a directory structure-like behavior. For security purposes, the ability of the web server to access the file
system is limited to the following root folders:

(@) www/

(b) www/safe/

Important: One of these two root folders should be prefixed to the filename when downloading files to the
file system.

The www/safe/ folder is also used in Force AP mode. For details, see Section 12.5.

The SimpleLink server holds an internal set of web pages statically, on ROM, which serves as an internal
default web page. The internal web page provides out-of-the-box device configuration, status, and basic
analysis tools.

72

HTTP Server SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com HTTP GET Processing

The SimpleLink server also has an interface to the host (through the SimpleLink commands and events
dispatcher module) in order to implement the user API.

12.2 HTTP GET Processing

12.2.1 Overview

When the HTTP web server gets an HTTP GET request, it first checks the resource URN of the HTTP
request for the name of the requested resource. The server then checks if this resource exists in the serial
flash. If the resource exists, the server returns it as part of the HTTP response.

If the server does not find the requested resource on the flash, the server checks if this resource is one of
the files of the internal web page in the ROM. If the resource is a file of the web page, the server returns
the resource; if not, an HTTP error message is sent (HTTP/1.0 404 Not Found response).

12.2.2 Default Web Page

In case the HTTP GET does not contain any resource name (for example, /), the HTTP web server looks
for the following filenames in this order:

1. Index.html
2. Main.html

The server first checks them on the serial flash, and then in the internal web page.

12.2.3 SimpleLink GET Tokens

To support HTML pages with data that is generated dynamically by the server, the HTTP web server
supports a set of predefined tokens replaced on the fly by the server with dynamically generated content.

» The tokens have a fixed length of 10 characters.

» The token prefix is identical to all tokens and seven characters in length.

* The token prefixis: __ SL_G_

e A typical token should look like this: _ SL_G_XYZ where XYZ is one of the predefined tokens.

For a complete list of the predefined tokens, see Section 12.10.

12.2.4 User-Defined Tokens
The user can define new tokens that are not known by the HTTP web server.

The token should follow the same rules as the predefined tokens:

» The tokens have a fixed length of 10 characters.

* The token prefix is identical to all tokens and seven characters in length.

» The token prefixis: __SL _G_

» A typical token should look like this: __ SL_G_XYZ where XYZ is user-defined and can contain any
character or number.

If the HTTP web server scans the HTML file and finds a token that is not in the predefined list of tokens,
the server generates a get_token_value asynchronous event with the token name, requesting the token
value from the host.

The host should respond with a send_token_value command, with the token value. The HTTP web
server will use this token value and return it to the client.

Important: The maximum length of the token value is 64 bytes.

If the host is not responding to the get_token_value request, the server implements a time-out of two
seconds. After the time-out, the Not Available string is used as the token value (and is eventually be
displayed by the browser).

SWRU368-June 2014 HTTP Server 73

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

HTTP GET Processing www.ti.com

Important: To prevent user tokens from colliding with the internal tokens, use tokens with the following
structure: __ SL_G_UXX, where XX can be any character or number.

12.2.5 HTML Sample Code with Dynamic HTML Content

In the following code the token _ SL_G_N.A will be replaced by the actual IP address:
<tr>

<td dir=LTR> IP Address: </td>

<td dir=LTR>__SL_G_N.A </td>

<[tr>

12.3 HTTP POST Processing

12.3.1 Overview

The client uses HTTP POST requests to update data in the server. The SimpleLink HTTP web server
supports HTML forms with content type of application/x-www-form-urlencoded. The POST information that
is sent by the browser includes the form action name and one or more pairs of variable name and variable
value.

12.3.2 SimpleLink POST Tokens

In SimpleLink the variable name in the POST should follow the same rules of the GET tokens.

» The tokens have a fixed length of 10 characters.

» The token prefix is identical to all tokens and seven characters in length.

e The token prefixis: __SL P_

» A typical token should look like this: __ SL_P_XYZ where XYZ is user-defined and can contain any
character or number.

When the HTTP web server receives an HTTP POST request, the server first checks the form action
name to understand if this POST should be handled internally. The server then goes over the parameters
list, and checks each variable name to see if it matches one of the known predefined tokens. If the
variable names match the predefined tokens, the server processes the values.

12.3.3 SimpleLink POST Actions

In SimpleLink the variable name in the POST should follow the same rules of the GET tokens.

» The tokens have a fixed length of 10 characters.

* The token prefix is identical to all tokens and seven characters in length.

* The token prefixis: __ SL _P_

» A typical token should look like this: __ SL_P_XYZ where XYZ is user-defined, and can contain any
character or number.

When the HTTP web server receives an HTTP POST request, the server first checks the form action
name to understand if this POST should be handled internally. The server then goes over the parameters
list, and checks each variable name to see if it matches one of the known predefined tokens. If the
variable names match predefined tokens, the server processes the value.

12.3.4 SimpleLink POST Actions

There are two types of POST operations: simple actions and complex actions.

In simple POST actions, the server processes the list of POST parameters and saves the new information
(such as set domain name). In this case, the action value is not important and the server does not identify
it.

74

HTTP Server SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com HTTP POST Processing

In complex POST actions, the server should gather all the needed POST parameters and then trigger a
specific action (such as add profile). In this case, the action is identified by the action value in the HTTP
POST command.

12.3.5 User-Defined Tokens

User-defined tokens are used in POST requests to send information to the host.

If the HTTP web server receives an HTTP POST request that contains tokens that are not in the
predefined list of tokens, the server generates a post_token_value asynchronous event to the host,
which will contain the following information: form action name, token name, and token value. The host can
then process the required information.

Important: To prevent user tokens from colliding with the internal tokens, use tokens with the following
structure: __ SL_P_UXX, where XX can be any character or number.

12.3.6 Redirect after POST

In SimpleLink, the user redirects the browser to a different web page after the POST submission.

After the POST is processed, the HTTP web server checks the action-URI received in the POST request.
If the action-URI includes a valid web page in the SimpleLink (serial flash or ROM), the server issues an
HTTP 302 Found response with the action-URI value, to perform redirection.

If the action-URI does not contain a valid web page, the HTTP web server issues an HTTP 204 No
content response and the browser remains on the current web page.

12.3.7 HTML Sample Code with POST and Dynamic HTML Content

In the following POST example, once the user clicks on the submit button the POST request includes the
profiles_add.html as the action resource and the variables __SL_P_P.Aand __SL_P_P.B with the values
that the user requested.

<form method="POST" name="SimpleLink Configuration" action="profiles_add.html">
<tr>
<td dir=LTR> SSID: </td>

<td dir=LTR><input type="text" maxlength="32" name="__SL_P_P.A" /> Enter any value of up to 32
characters</td>

</tr>

<tr>

<td dir=LTR> Security Type: </td>

<td dir=LTR> <input type="radio name="__SL_P_P.B" value="0" checked />Open
<input type="radio" name="__SL_P.P.B" value="1" />WEP

<input type="radio" name="__ SL_P_P.B" value="2" />WPA1

<input type="radio" name="__SL_P_P.B" value="3" />WPA2 </td>

<ftr>

<tr>

<td colspan=2 align=center><input type="submit" value="add"/></td>

</tr>

</form>

In the following example, when the page is displayed (HTTP GET), the _ SL_G_N.A is replaced by the

HTTP web server with the current IP address value, displayed in the input box. When the user changes
and submits the IP address, the new value is sent with the _ SL_P_N.A variable.

SWRU368-June 2014 HTTP Server 75
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Internal Web Page www.ti.com

12.4

12.5

12.6

<form method="POST" name="SimpleLink Configuration action" action="ip_config.html">

<tr>

<td dir=LTR> IP Address: <td>

<td dir=LTR><input type="text" maxlength="15" name="__ SL P_N.A" value="__SL_G_N.A"/> </td>
</tr>

<tr>

<td colspan=2 align=center><input type="submit" value="Apply"/></td>

</tr>

</form>

Internal Web Page

The SimpleLink device has a default web page already embedded in ROM. This web page can be used to
perform the following:

» Get versions and general information about the device

« |IP configuration

e Add or remove Wi-Fi profiles

» Enable or disable ping test

Access to the internal web page is configured through the API. By default, access is enabled.
The web page is composed of the following files:

» about.html

* image001.png

e ip_config.html

» Logo.gif
e main.html
* ping.html

» profiles_config.html
» simple_link.css

» status.html

* tools.html

Force AP Mode Support

The Force AP mode returns the SimpleLink to its default configuration. This mode is entered with a special
external GPIO.

When the SimpleLink enters Force AP mode, the HTTP server behaves as follows:

1. The server only permits access to the www/safe/ folder in the file system. This lets the user put a set of
web pages in the www/ folder that will not be accessible in Force AP mode.

2. In this mode, a Clear all Profiles button appears in the internal configuration web pages, enabling the
user to clear all the saved profiles from the device.

Accessing the Web Page

12.6.1 SimpleLink in Station Mode

When the SimpleLink is in station mode, the user can access the web page from the browser using the IP
address. The HTTP service is also published by the mDNS server, so the IP address can be acquired
from the mDNS publications.

76

HTTP Server SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com Accessing the Web Page

12.6.2 SimpleLink in AP Mode

12.7

12.8

When in AP mode, access to the web page is performed using the domain name. The domain name is
configured with the host API.

In AP mode, the SimpleLink is also accessed using the IP address.
The default domain name is mysimplelink.net.
Accessing the web page can be performed with either mysimplelink.net or www.mysimplelink.net.

When using the www. prefix in the domain name when the domain name does not match, the server
internally removes this prefix and tries to search without it.

Important: Use the www. prefix in the domain name search because commercial browsers behave better
from a DNS perspective.

HTTP Authentication Check

If enabled, the SimpleLink performs an authentication check when the client first connects to the server.
The authentication check can be enabled or disabled using the host API.

Authentication user name, password, and realm can also be configured by the host API.
By default, the authentication is disabled.

The default authentication values are:

» Authentication name: admin

» Authentication password: admin

» Authentication realm: Simple Link CC31xx

A description of the host interface can be found in paragraph: Host / HTTP web server API.

Handling HTTP Events in Host Using the SimpleLink Driver

When the HTTP server locates user tokens in the HTML files, the server generates get_token_value (for
GET tokens) or post_token_value (for post tokens) events to the host for the user to correctly handle
them.

When the host gets a get_token_value event with a specific token name, the server returns the token
value for this token name by using the send_token_value command.

If the host does not have any token value to return, the server uses zero as the length of the token value.

When the user gets a post_token_value event with the token name and value, the user must save this
new token value.

In the SimpleLink driver, when one of the preceeding events is generated the driver calls a predefined
callback called SimpleLinkHttpServerCallback();

The callback is defined as follows:

void SimpleLinkHttpServerCallback(SIHttpServerEvent_t *pHttpServerEvent, SIHttpServerResponse_ t
*pHttpServerResponse)

Where serverEvent and serverResponse are defined as follows:
typedef struct

{
unsigned long Event;
SIHttpServerEventData_u EventData;

}SIHttpServerEvent_t;
typedef struct
{

SWRU368-June 2014 HTTP Server 77
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

Handling HTTP Events in Host Using the SimpleLink Driver

TEXAS
INSTRUMENTS

www.ti.com

unsigned long Response;

SIHttpServerResponsedata_u ResponseData;

}SIHttpServerResponse_t;
typedef union

{
sIHttpServerString_t httpTokenName; /* SL_NETAPP_HTTPGETTOKENVALUE */
sIHttpServerPostData_t httpPostData; /* SL_NETAPP_HTTPPOSTTOKENVALUE */

} SIHttpServerEventData_u;
typedef union

{

sIHttpServerString_t token_value; /*
< 64 bytes*/

} SIHttpServerResponsedata_u;
typedef struct _slHttpServerString_t

{
UINTS8 len;
UINT8 *data;

} slHttpServerString_t;
typedef struct _slHttpServerPostData_t

{

sIHttpServerString_t action;
sIHttpServerString_t token_name;
sIHttpServerString_t token_value;

}sIHttpServerPostData_t;
The following is a sample code for the user callback:

/*HTTP Server Callback example */

void SimpleLinkHttpServerCallback(SIHttpServerEvent_t *pHttpServerEvent,
SIHttpServerResponse_t *pHttpServerResponse)

{
switch (pHttpServerEvent->Event)

{

/* Handle Get token value */
case SL_NETAPP_HTTPGETTOKENVALUE:

{

char * tokenValue;
tokenValue = GetTokenValue (pHttpServerEvent >EventData.httpTokenName);

/* Response using driver memory - Copy the token value to the Event response
Important - Token value len should be < MAX_TOKEN_VALUE_LEN (64 bytes) */

strcpy (pHttpServerResponse->ResponseData.token_value.data, tokenValue);

78 HTTP Server SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com SimpleLink Driver Interface the HTTP Web Server

pHttpServerResponse->ResponseData.token_value.len = strlen (tokenvalue);

}

break;

/* Handle Post token */
case SL_NETAPP_HTTPPOSTTOKENVALUE:
{

HandleTokenPost (pHttpServerEvent->EventData.httpPostData.action,
pHttpServerEvent->EventData.httpPostData.token_name,
pHttpServerEvent->EventData.httpPostData. token_value);

}

break;
defaul t:
break;
3
}

Important: For the HTTP callback to work the following line should be uncommented in user.h:
#define sl_HttpServerCallback SimpleLinkHttpServerCallback

12.9 SimpleLink Driver Interface the HTTP Web Server
The SimpleLink driver supplies an API to access and configure the HTTP server.
The API definition can be found in netapp.h.

12.9.1 Enable or Disable HTTP Server
Functions used for enabling or disabling the HTTP server. By default, the server is enabled.

Table 12-1. Enable or Disable HTTP Server

Function name Description Parameters
. appld =
void sl_NetAppStart(UINT32 appld) Starts the HTTP server SL_NET_APP_HTTP_SERVER_ID
. appld =
void sl_NetAppStop(UINT32 appld) Stops the HTTP server SL_NET_APP_HTTP_SERVER_ID

12.9.2 Configure HTTP Port Number
Functions used for configuring the port number.

Table 12-2. Configure HTTP Port Number

Function name Description Parameters
long sl_NetAppSet (unsigned appld =
char appld , SL_NET_APP_HTTP_SERVER_ID
h Option =
unsigned char Option, Sets the port number on which the HTTP NETAPP_SET GET HTTP_OPT PORT_
server will listen. NUMBER
Port number is UINT16. . b
unsigned char OptionLen, pOptionLen = 2 (size of UINT16)
pOptionValue = pointer to port number
unsigned char *pOptionValue) (UINT16)
SWRU368—-June 2014 HTTP Server 79

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
SimpleLink Driver Interface the HTTP Web Server www.ti.com
Table 12-2. Configure HTTP Port Number (continued)
Function name Description Parameters
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =
- - Gets the current HTTP server port NETAPP_SET_GET_HTTP_OPT_PORT_
unsigned char Option, number. NUMBER
_ _ Port number is UINT16. pOptionLen = user-supplied pointer for the
unsigned char *pOptionLen, returned value len
pOptionValue = user-supplied pointer for
unsigned char *pOptionValue) the returned value

Important: After setting a new port number, restart the server for the configuration to occur.

12.9.3 Enable or Disable Authentication Check

Functions used for enabling or disabling authentication check. By default, authentication check is disabled.

Table 12-3. Enable or Disable Authentication Check

unsigned char OptionLen,

Function name Description Parameters
long sl_NetAppSet (unsigned appld =
char appld , SL_NET_APP_HTTP_SERVER_ID
. Option =
unsigned char Option, Enables or disables the HTTP server | \eqapp SET GET HTTP_OPT AUTH.
authentication check CHECK

Auth_enable value is true/false.

pOptionLen = 1 (size of UINT8)
pOptionValue = pointer to auth_enable

unsigned char *pOptionLen,

unsigned char *pOptionValue)

unsigned char *pOptionvalue) (true/false)
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =
unsigned char Option, Gets the current authentication status. NETAPP_SET_G(I:EJEE‘:;TP_OPT_AUTH_

Return auth_enable value is true/false.

pOptionLen = user-supplied pointer for the
returned value len

pOptionValue = user-supplied pointer for
the returned value

12.9.4 Set or Get Authentication Name, Password, and Realm

Functions used to set or get the authentication name, password, and realm.

Table 12-4. Set or Get Authentication Name

unsigned char OptionLen,

Function name Description Parameters
long sl_NetAppSet (unsigned appld =
char appld , SL_NET_APP_HTTP_SERVER_ID
Option =
unsigned char Option, Sets authentication name. NETAPP_SET_GET_HTTP_OPT_AUTH_
NAME

Name format is string.

OptionLen = authentication name length
pOptionValue = pointer to authentication

unsigned char *pOptionLen,

unsigned char *pOptionValue)

unsigned char *pOptionValue) name
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =
- - Gets current authentication name. NETAPP_SET_GET_HTTP_OPT_AUTH_
unsigned char Option, Name format is string (not null NAME

terminated).

pOptionLen = user-supplied pointer for the
returned name len

pOptionValue = user-supplied pointer for
the returned name

80 HTTP Server

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

SimpleLink Driver Interface the HTTP Web Server

Table 12-5. Set or Get Authentication Password

Function name Description Parameters
long sl_NetAppSet (unsigned appld =
char appld , SL_NET_APP_HTTP_SERVER_ID
Option =
unsigned char Option, Sets authentication password. NETAPP_SET_GET_HTTP_OPT_AUTH_
; A PASSWORD
Password format is string. . _ .
_ _ OptionLen = authentication password
unsigned char OptionLen, length
pOptionValue = pointer to authentication
unsigned char *pOptionValue) password
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =
- - Gets current authentication password. NETAPP_SET_GET_HTTP_OPT_AUTH_
unsigned char Option, Password format is string (not null PASSWORD
_ - _ terminated). pOptionLen = user-supplied pointer for the
unsigned char *pOptionLen, returned password len
) ) pOptionValue = user-supplied pointer for
unsigned char *pOptionValue) the returned password

Table 12-6. Set or Get Authentication Realm

unsigned char OptionLen,

Function name Description Parameters
long sl_NetAppSet (unsigned appld =
char appld , SL_NET_APP_HTTP_SERVER_ID
Option =
unsigned char Option, Sets authentication realm. NETAPP_SET_GET_HTTP_OPT_AUTH_
Realm format is string. REALM

OptionLen = authentication realm length
pOptionValue = pointer to authentication

unsigned char *pOptionLen,

unsigned char *pOptionValue)

unsigned char *pOptionvalue) realm
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =
- - Gets current authentication realm. NETAPP_SET_GET_HTTP_OPT_AUTH_
unsigned char Option, Realm format is string (not null REALM

terminated).

pOptionLen = user-supplied pointer for the
returned realm len

pOptionValue = user-supplied pointer for
the returned realm

12.9.5 Set or Get Domain Name

Functions used to set or get the domain name (used for accessing the web server in AP mode).

Table 12-7. Set or Get Domain Name

unsigned char Option,

unsigned char OptionLen,

unsigned char *pOptionValue)

Function name Description Parameters
long sl_NetAppSet (unsigned
char appld , appld =
SL_NET_APP_DEVICE_CONFIG_ID
Option =

Sets the domain name.
Domain name format is string.

NETAPP_SET_GET_DEV_CONF_OPT_
DOMAIN_NAME
OptionLen = domain name length
pOptionValue = pointer to domain name

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

HTTP Server 81


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
SimpleLink Driver Interface the HTTP Web Server www.ti.com
Table 12-7. Set or Get Domain Name (continued)
Function name Description Parameters
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_DEVICE_CONFIG_ID
Option =
- - Gets current domain name. NETAPP_SET_GET_DEV_CONF_OPT_
unsigned char Option, Domain name format is string (not null DOMAIN_NAME
_ - _ terminated). pOptionLen = user-supplied pointer for the
unsigned char *pOptionLen, returned domain name len
) ) pOptionValue = user-supplied pointer for
unsigned char *pOptionvalue) the returned domain name

12.9.6 Set or Get URN Name
Functions used to set or get the device unique URN name.

Table 12-8. Set or Get URN Name

Function name Description Parameters
long sl_NetAppSet (unsigned
char appld , appld =
SL_NET_APP_DEVICE_CONFIG_ID
- - Option =
unsigned char Option, Sets the URN name. NETAPP_SET GET DEV_CONF_OPT_
URN name format is string. DEVICE URN
unsigned char OptionLen, OptionLen = URN name length

pOptionValue = pointer to URN name
unsigned char *pOptionValue)

long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_DEVICE_CONFIG_ID
Option =
- - Gets current URN name. NETAPP_SET_GET_DEV_CONF_OPT_
unsigned char Option, URN name format is string (not null DEVICE_URN
_ - _ terminated). pOptionLen = user-supplied pointer for the
unsigned char *pOptionLen, returned URN name len
pOptionValue = user-supplied pointer for
unsigned char *pOptionValue) the returned URN name

12.9.7 Enable or Disable ROM Web Pages Access

Functions used to enable or disable the access to the ROM internal web pages. By default, web access is
enabled.

Table 12-9. Enable or Disable ROM Web Pages Access

Function name Description Parameters
long sl_NetAppSet (unsigned
char appld , appld =
SL_NET_APP_HTTP_SERVER_ID
- - . Option =
nsigned char Option,
unsig pti Enables or disables the HTTP server NETAPP_SET GET HTTP_OPT ROM_
ROM pages access.
unsigned char OptionLen Value is true or false . PAGES_ACCESS
g P ’ ’ OptionLen = 1 (sizeof UINT8)
} pOptionValue = pointer to boolean
unsigned char (true/false)
*pOptionValue)

SWRU368-June 2014

82 HTTP Server
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

SimpleLink Predefined Tokens

Table 12-9. Enable or Disable ROM Web Pages Access (continued)

unsigned char Option,
unsigned char *pOptionLen,

unsigned char *pOptionValue)

Gets the current ROM pages access
status.
Return value is true or false.

Function name Description Parameters
long sl_NetAppGet (unsigned appld =
char appld, SL_NET_APP_HTTP_SERVER_ID
Option =

NETAPP_SET_GET_HTTP_OPT_ROM_
PAGES_ACCESS
pOptionLen = user-supplied pointer for the
returned value len
pOptionValue = user-supplied pointer for
the returned value

12.10 SimpleLink Predefined Tokens

This section contains information about the predefined internal tokens, and describes the tokens for the
GET operations, POST operations, and the POST actions handled internally.

Important: To prevent user tokens from colliding with the internal tokens, use tokens with the following

structure:

» For GET operations: __ SL_G_UXX, where XX can be any character or number.
» For POST operations: __SL_P_UXX, where XX can be any character or number.

12.10.1 GET Valu

GET system information values:

es

Table 12-10. System Information

Token

Name

Value / Usage

SL_ G_S.A

System Up Time

Returns the system up time since the last
reset in the following format: 000 days
00:00:00

SL_G_S.B

Device name (URN)

Returns the device name

SL_G_S.C

Domain name

Returns the domain name

SL_G_S.D

Device mode (role)

Returns the device role.
Values: Station, Access Point, P2P

SL_G_SE

Device role station

Drop-down menu select/not select
Returns “selected” if the device is a
station, otherwise it returns “not_selected.”

SL_G_SF

Device role AP

Drop-down menu select/not select
Returns “selected” if the device is an AP,
otherwse it returns “not_selected.”

SL_G_S.G

Device role P2P

Drop-down menu select/not select
Returns “selected” if the device is in P2P,
otherwise it returns “not_selected.”

SL_G_S.H

Device name URN (truncated to 16 bytes)

Returns the URN string name with up to
16-byte len. Longer names are truncated.

SL_G_S.I

System requires reset (after parameters
change)

If the system requires a reset, the return
value is the following string: -- Some
parameters were changed, System may
require reset --, otherwise it returns an
empty string.

Every internal POST that was handled will
cause this token to return TRUE.

SL_G_S.J

Get system time and date

Returned value is a string with the
following format:
Year, month, day, hours, minutes,
seconds

SL_G_SK

Safe mode status

If the device is in safe mode it returns
“Safe Mode”, if not it returns an empty
string.

SWRU368—-June 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

HTTP Server 83


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

SimpleLink Predefined Tokens

13 TEXAS
INSTRUMENTS

www.ti.com

GET version information:

Table 12-11. Version Information

Token Name Value / Usage
_SL.G_ VA NWP version Returns string with the version information
_SL.G_V.B MAC version Returns string with the version information
_SL.G_V.C PHY version Returns string with the version information
_SL.G_V.D HW version Returns string with the version information

GET network information:

Table 12-12. Network Information

Token ‘ Name | Value / Usage
Station (and P2P client)
__SL_.G_N.A STA IP address String format: xxx.yyy.zzz.ttt
__SL_.G_N.B STA subnet mask String format: xxx.yyy.zzz.ttt
__SL_G_N.C STA default gateway String format: xxx.yyy.zzz.ttt
__SL_.G_N.D MAC address String format: 00:11:22:33:44:55
__SL_G_N.E STA DHCP state Returns value: Enabled or Disabled
If DHCP is disabled, returns Checked,
__SL_G_N.F STA DHCP disable state otherwise it returns Not_Checked.
Used in the DHCP radio button.
If DHCP is enabled, returns Checked,
__SL_G_N.G STA DHCP enable state otherwise it returns Not_Checked.
Used in the DHCP radio button.
__SL_G_N.H STA DNS server String format: xxx.yyy.zzz.ttt
DHCP server
__SL_G_N.I DHCP start address String format: xxx.yyy.zzz.ttt
_SL_G_NJ DHCP last address String format: xxx.yyy.zzz.ttt
__SL_G_NK DHCP lease time String of the lease time in seconds
AP (and P2P Go)
__SL_G_N.P AP IP address String format: xxx.yyy.zzz.ttt
_SL.G_ WA Channel # in AP mode
_SL.G WB SSID
_SL.G_ W.C Security type Returned values: Open, WEP, WPA
If the security type is open, it returns
Checked, otherwise it returns
_SL.G_ WD Security type Open Not_Checked.
Used in the security type radio button
check/not checked.
If the security type is WEP, returns
Checked, otherwise it returns
_SL_.G_W.E Security type WEP Not_Checked.
Used in the security type radio button
check/not checked.
If the security type is WPA, it returns
Checked, otherwise it returns
__SL.G_W.F Security type WPA Not_Checked.
Used in the security type radio button
check/not checked.

GET tools:

84 HTTP Server

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS

INSTRUMENTS

www.ti.com

SimpleLink Predefined Tokens

Table 12-13. Tools

Token Name Value / Usage

Ping test results
_SLG.TA IP address String format: xxx.yyy.zzz.ttt
_SL.G_TB Packet size
_SL. G T.C Number of pings
_SL.G_TD Ping results — total sent Number of total pings sent
_SL G_TE Ping results — successful sent Number of successful pings sent
_SL G_TE Ping test duration In seconds

GET connection policy status:

Table 12-14. Connection Policy Status

Token

Name

Value / Usage

_SLG_PE

Auto connect

If auto connect is enabled, returns
Checked, otherwise it returns
Not_Checked.

Used in the auto connect check box.

_SL G PF

Fast connect

If fast connect is enabled, returns
Checked, otherwise it returns
Not_Checked.

Used in the fast connect check box.

_SLG_PG

Any P2P

If any P2P is enabled, returns Checked,
otherwise it returns Not_Checked.
Used in the any P2P checkbox.

_SLGPP

Auto SmartConfig

If auto SmartConfig is enabled, returns
Checked, otherwise it returns
Not_Checked.

Used in the auto SmartConfig checkbox.

GET display profiles information:

Table 12-15. Display Profiles Information

Token Name Value / Usage
__SL_G_PN1 Return profile 1 SSID SSID string
__SL_G_PN2 Return profile 2 SSID SSID string
__SL_G_PN3 Return profile 3 SSID SSID string
__SL_G_PN4 Return profile 4 SSID SSID string
__SL_G_PN5 Return profile 5 SSID SSID string
__SL_G_PN6 Return profile 6 SSID SSID string
__ SL_G_PN7 Return profile 7 SSID SSID string

Returned values: Open, WEP, WPA,
_SL G Ps1 Return profile 1 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
Returned values: Open, WEP, WPA,
_SL G _PSs2 Return profile 2 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
Returned values: Open, WEP, WPA,
__SL_G_PS3 Return profile 3 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
Returned values: Open, WEP, WPA,
_SL G PS4 Return profile 4 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
Returned values: Open, WEP, WPA,
__SL_G_PS5 Return profile 5 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

HTTP Server 85



http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

SimpleLink Predefined Tokens

13 TEXAS
INSTRUMENTS

www.ti.com

Table 12-15. Display Profiles Information (continued)

Token Name Value / Usage
Returned values: Open, WEP, WPA,
__SL_G_PS6 Return profile 6 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
Returned values: Open, WEP, WPA,
_SL_G_PS7 Return profile 7 security status WPS, ENT, P2P_PBC, P2P_PIN or — for
empty profile.
_SL_G_PP1 Return profile 1 priority Profile priority: 0-7
_SL_G_PP2 Return profile 2 priority Profile priority: 0-7
_ SL_G_PP3 Return profile 3 priority Profile priority: 0-7
__SL_G_PP4 Return profile 4 priority Profile priority: 0-7
__SL_G_PP5 Return profile 5 priority Profile priority: 0-7
__SL_G_PP6 Return profile 6 priority Profile priority: 0-7
__ SL_G_PP7 Return profile 7 priority Profile priority: 0-7

GET P2P information:

Table 12-16. P2P Information

Token Name Value / Usage
__SL.G_RA P2P Device name String
_SL.G_RB P2P Device type String
SL G RC P2P Listen channel Returns string of the listen channel
— = number
If the current listen channel is 1, returns
Selected, otherwise it returns
_SL. G_RT Listen channel 1 Not_selected.
Used for the drop-down menu of the listen
channel.
If the current listen channel is 6, returns
Selected, otherwise it returns
_SL.G_RU Listen channel 6 Not_selected.
Used for the drop-down menu of the listen
channel.
If the current listen channel is 11, returns
Selected, otherwise it returns
_SL.G_RV Listen channel 11 Not_selected.
Used for the drop-down menu of the listen
channel.
_ SLGRE P2P Operation channel Returns string of the operational channel
number
If the current operational channel is 1,
returns Selected, otherwise it returns
__SL_.G_RW Operational channel 1 Not_selected.
Used for the drop-down menu of the
operational channel.
If the current operational channel is 6,
returns Selected, otherwise it returns
_SL G_RX Operational channel 6 Not_selected.
Used for the drop-down menu of the
operational channel.
If the current operational channel is 11,
returns Selected, otherwise it returns
_SL G_RY Operational channel 11 Not_selected.
Used for the drop-down menu of the
operational channel.
_SL.G_RL Negotiation intent value Returned values: Group Owner,

Negotiate, Client

86 HTTP Server

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com SimpleLink Predefined Tokens

Table 12-16. P2P Information (continued)

Token Name Value / Usage

If the intent is Group Owner, it returns
Checked, otherwise it returns
_SL.G_.RM Role group owner Not_Checked.
Used for the negotiation intent radio
button.

If the intent is Negotiate, it returns
Checked, otherwise it returns
__SL.G_R.N Role negotiate Not_Checked.
Used for the negotiation intent radio
button.

If the intent is Client, it returns Checked,
otherwise it returns Not_Checked.
Used for the negotiation intent radio
button.

__SL_.G_R.O Role client

Returned values: Active, Passive,

_SL G_R.P Negotiation initiator policy Random Backoff

If the negotiation initiator policy is Active, it
returns Checked, otherwise it returns
_SL G_RQ Neg initiator active Not_Checked.
Used for the negotiation initiator policy
radio button.

If the negotiation initiator policy is Passive,
it returns Checked, otherwise it returns
_SL G_RR Neg initiator passive Not_Checked.
Used for the negotiation initiator policy
radio button.

If the negotiation initiator policy is Random
Backoff, it returns Checked, otherwise it
_SL G_R:S Neg initiator random backoff returns Not_Checked.
Used for the negotiation initiator policy
radio button.

12.10.2 POST Values

POST system configuration

Table 12-17. System Configuration

Token Name Value / Usage
_SL P SB Device name (URN) Sets device name
_SL P SC Domain name Sets domain name
. Sets device mode

—SLP_SD Device mode (role) Values: Station, AP, P2P

Sets system time and date. The value is a
_SL P SJ Post system time and date string with the following fo_r mat:

Year, month, day, hours, minutes,
seconds

Value should contain a valid web page. If

the page exists, the web server issues an
_SLP SR Redirect after post HTTP 302 response to redirect to the web

page.
Can be used for redirection after
submitting a form (with HTTP post).

POST network configurations:

SWRU368-June 2014 HTTP Server 87

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

SimpleLink Predefined Tokens

13 TEXAS
INSTRUMENTS

www.ti.com

Table 12-18. Network Configurations

Token ‘ Name | Values / Usage
Station (and P2P client)
Sets STA IP address.
—SLP_NA STA IP address Value format: xxx.yyy.zzz.ttt
Sets STA subnet mask.
—SLP_NB STA subnet mask Value format: xxx.yyy.zzz.ttt
Sets STA default gateway.
—SLP_NC STA default gateway Value format: xxx.)gyy.zzz.{tt
’ Enables or disables DHCP state.
__SL_ P ND STA DHCIE zt;:?n(nt]gstggee g;?;ctzl)ed for the If value is Enable, then DHCP is enabled,
9 any other value disables the DHCP.
Sets STA DNS server address.
—SL_P_NH STA DNS server Value format: xxx.yyy.zzz.ttt
DHCP server
__SL_P_N.I DHCP start address Valug?ésms]g‘xiidxjsz'zz t
Sets last address.
—SLP_N.J DHCP last address Value format: xxx.yyy.zzz.ttt
__SL_ P_NK DHCP lease time Sets lease time, in seconds
AP (and P2P Go)
Sets AP IP address.
—SLP_N.P AP IP address Value format: xxx.yyy.zzz.ttt
_SLP. WA Channel # in AP mode Smf,;ﬁ‘laer;’?i' tr(‘)“f‘sbe"
_SL_P_WB SSID Sets SSID
. Sets security type:
—SLP_WC Security type 0 for Open, 1 for WEP, 2 for WPA.
__SL P WG Password Sets password

POST connection policy configuration:

Table 12-19. Connection Policy Configuration

Token

Name

Values / Usage

Connection policy configuration

Used with the connection policy form
(policy_config.html action)

_SLPPE

Auto connect

Enable or Disable
If this parameter exists in the POST (with
any value), this policy is set. If this
parameter does not exist in the POST, this
policy flag is cleared.

_SL P PF

Fast connect

Enable or Disable
If this parameter exists in the POST (with
any value), this policy is set. If this
parameter does not exist in the POST, this
policy flag is cleared.

_SLPPG

Any P2P

Enable or Disable
If this parameter exists in the POST (with
any value), this policy is set. If this
parameter does not exist in the POST, this
policy flag is cleared.

_SL P PP

Auto SmartConfig

Enable or Disable
If this parameter exists in the POST (with
any value), this policy is set. If this
parameter does not exist in the POST, this
policy flag is cleared.

88 HTTP Server

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

SimpleLink Predefined Tokens

POST profiles configuration:

Table 12-20. Profiles Configuration

Token Name Values / Usage
) Used with the add new profile form
Add new Profile (profiles_add.html action)
_SLPPA SSID SSID string
. Security type: 0 for Open, 1 for WEP, 2 for
_SLPPB Security type WPAL, 3 for WPA2
_SL P PC Security key Smaller than 32 characters
_SL P PD Profile priority Oto7

Add P2P Profile

Used with the add P2P profile form
(p2p_profiles_add action)

_SLPPA P2P Remote device name String
. Security type: 6 for push-button, 7 for PIN
_SLPPB P2P Security type ykﬁ§pad 8 fgr PIN display
_SL P PC P2P PIN code Digits only
_SL_P_P.D P2P Profile priority Oto7

Add Enterprise Profile

Used with the add enterprise profile form
(eap_profiles_add action)

_SL_P PH SSID Sting

_SL P_P. Identity String

_SL P_PJ Anonymous identity String

_SL P PK Password String

_SLPPL Profile priority Oto7

_SLPPM EAP method Values: TLS, TTFLASS, TPEAPo, PEAP1,

_SL P PN PHASE 2 Authentication Values: TLS, MSCHAPV2, PSK
Values: None, 0, 1, 2, 3

_SL P PO Provisioning (0,1, 2) (for fast method only) Relevant for fast method only (values O to

3)
For other methods, use None.

Profile remove

_SL_P_PRR Remove profile Remove selected profile Value: 1 to 7
POST tools:
Table 12-21. Tools
Token Name Values / Usage
Start ping test
_SLPTA IP address IP address of the remote device
_SLP.TB Packet size In bytes (32 to 1472)
_SLPTC Number of pings 0 to unlimited, 1 to 255

POST P2P configuration:

Table 12-22. P2P Configuration

Token Name Values / Usage
) Set P2P operational channel.
_SL P RE P2P Channel (operational) Values: 1, 6, 11
Set Negotiation intent value.
_SLPRL Negotiation intent value Values: CL for client, NEG for negotiate,
GO’for group owner

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

HTTP Server 89


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

SimpleLink Predefined Tokens

13 TEXAS
INSTRUMENTS

www.ti.com

12.10.3 POST Actions

Table 12-23 describes the POST actions handled internally as complex actions and the respective token
parameters used in each post. All other remaining post parameters are handled by the server by updating

their respective value.

Table 12-23. POST Actions

Action Name

Description

POST Tokens Parameters

sta_ip_config

Station network configuration

* STA IP address
* STA subnet mask
* STA default gateway
* STA DHCP state
* STA DNS server

ap_ip_config

Access point network configuration

* AP |IP address
* DHCP start address
¢ DHCP last address
* DHCP lease time

profiles_add.html

Add new profile

* SSID
« Security type
* Security key
* Profile priority

p2p_profiles_add

Add peer to peer profile

« P2P Remote device name
* P2P Security type
* P2P PIN code
» P2P Profile priority

eap_profiles_add

Add Enterprise profile

* SSID
* Identity
« Anonymous identity
« Password
« Profile priority
« EAP method
* PHASE 2 Authentication
« Provisioning

remove_all_profiles

Remove all profiles

Not relevant
Note: Keep at least one parameter in the
HTML so the HTTP POST will not be
empty.
The server will not check the parameter
value.

ping.html

Start the ping test

« |P address
« Packet size
* Number of pings

ping_stop

Stop the ping test

Not relevant
Note: Have at least one parameter in the
HTML so the HTTP POST will not be
empty.
The server will not check the parameter
value.

policy_config.html

Connection policy configuration

* Auto connect
* Fast connect
* Any P2P
« Auto SmartConfig

90 HTTP Server

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

2 TEXAS Chapter 13
INSTRUMENTS

SWRU368-June 2014

MDNS

Topic Page

70 R 1V =Y V1< 92

13.2 Services — HOW t0 FiNd Them .oueiieiiiiiii it ee e ee e e eeaesae st eaneanernesnnennenns 92

13.3  Start and StOP MDNS .. ...ttt e et et e e e e e e e e 95

13.4 Typical Operation MethOAS ... ... .viiieieit ettt e e a e eeaens 95

G TR S T L= = 11 =0 2 95
SWRU368-June 2014 mDNS 91

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Overview www.ti.com

13.1 Overview

The mDNS and DNS-SD feature provides the ability to find and advertise services on its local network,
and resolve host names to IP addresses without using a local name server.

By supporting RFCs 6762 and 6763, the mDNS module advertises services, sends query responses to
peer queries, and listens to peer advertisements.

MDNS uses the same programming interfaces, packet formats, and operating semantics as the unicast
Domain Name System (DNS), except that mDNS uses IP multicast User Datagram Protocol (UDP)
packets.

By default, mDNS exclusively resolves host names ending with the .local top-level domain (TLD).

The mDNS Ethernet frame is a multicast UDP packet to:
* MAC address 01:00:5E:00:00:FB

* |Pv4 address 224.0.0.251 or IPv6 address FF02::FB
e UDP port 5353

13.2 Services — How to Find Them

Services are found using RR queries. RRs store a large variety of information about a domain:
» |IP address

* Name server

* Mail exchanger

» Alias

* Host name

* Geo-location

» Service discovery

» Certificates

* Arbitrary text

A DNS zone database is a collection of resource records. Each resource record specifies information
about a particular object. For example, address mapping records a host name to an IP address.

RRS queries with types of PTR, SRV, TXT, and A are needed for discovering the full-service details.
» PTR RR returns the URN/full-service name.

» SRV RR is used for the discovery services provided by the hosts and returns the service types,
including the domain name.

* TXT RR gets the arbitrary text associated with a domain, or depicts the service. A record maps the
host names to an IPV4 address.

All answers must be sent in a single response to a query. For example:

When an mDNS client must resolve a host name after receiving a PTR record which includes a service in
the interest of the application:

1. The client sends an IP multicast query message asking the host with that name to identify it.
2. That target machine then multicasts a message that includes its IP address.
3. All machines in that subnet can then use that information to update their mDNS caches.

92 mDNS SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

Services — How to Find Them

Device B

Lookﬂng for
prirters

Name: _ipp_
Type: PTR

mDNS get service sequence diagram

Device A

N
l(_///ﬁ;fnf: ipp._tep.local
Type: F"-ﬁ'R

class IN,

DomainiName: DeviceA._ipp._tcp.local
|

I

I

: Answer::

! Name: DeviceA._ipp._tcp.local

Type SRV
class IN!
Target: (LL100010 local

|
Answer: |

Name: D#viceA._ipp._tcp.local
Type SRV
class IN, |
TXT: paper=a4
version=1.0.1

class IN, :
Addr: 201.201.201,108 (201.201.201.108)

Figure 13-1. mDNS Get Service Sequence

SWRU368—-June 2014

Submit Documentation Feedback

mDNS 93

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Services — How to Find Them

13 TEXAS
INSTRUMENTS

www.ti.com

Looki'ng for
prirfters

Name: _ipp._

mDNS get service sequence diagram

All Answers in
one frame

Ans ;

e: lipp._tcp.local
Type: P-ﬁ'R
class Il\q,

|
Answer:

Type SRV
class IN,
Target: I|I_L10001U.|Dcal

Answer: :

Type SRN

class IN1:

TXT: paper=a4
version=1.0.1

Answer:

Name: II_'rL10001D.IDGaII

Type A |

class IN,,

Figure 13-2. Find Full Service After Query

DomainiName: DeviceA._ipp._tcp.local

Name:; E}eviceA._ipp._tcp.Iocal

Name: DeviceA._ipp._tcp.local

Addr: 201.201.201.108 (201.201.201.108)

94

mDNS

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Start and Stop mDNS

13.3 Start and Stop mDNS

By default, the mDNS is started. To stop the mDNS, use the API sl_ sl_NetAppStop with
SL_NET_APP_MDNS_ID.

For example:

sl_

sl_NetAppStop(SL_NET_APP_MDNS_ID);

To start the mDNS, use the API sl_NetAppStart with SL_NET_APP_MDNS_ID.

For example:
sl_NetAppStart(SL_NET_APP_MDNS_ID);

The mDNS is stopped and started only for the current role. Other mDNS configurations are common to all
roles.

The mDNS can be configured if the role has no interface (for example, if the station is not connected or
P2P is not upped). The configuration is the same for all roles and is not related to a specific role (other
than start and stop).

mDNS frames (advertise, response to queries) are sent only if there is a valid IP address.

mDNS works if one of the following conditions is met:

Station is connected
P2P is upped (GO or client)
AP is upped

13.4 Typical Operation Methods

This section recommends three operations to find and register services.

134.1

PwbdPR

13.4.2
1.
2.

3.

Find Service RRs (Parameters) — By One-Shot Query

Mask, just once, all unwanted services to save space in the peer cache.

Use the API GET host by service using a full name or partial name containing the type of service.
Wait for an answer from one adapted service.

For more answers, wait and then use the APl GET service list to find all the answers of the adapted
services.

Find Service RRs (Parameters) — By Continuous Query
Mask, just once, all unwanted services to save space in the peer cache.

Set, just once, a continuous query with a full or partial name that contains the type of service. The
query is saved and used after each reset (if mDNS is started with IP).

Wait and use the API get service list to find all the answers of the adapted services.

Register Service

Register, just once, a specific service. The service is saved and advertised after each reset (if MDNS is
started and STA with IP or P2P/AP up).

Responses to queries that contain the service name or type are also sent.
Set, just once, the advertising timing parameters if the default parameters are not required.

13.5 Detailed APIs
This section describes the mDNS APIs.

135.1

APl — Get Host by Service

Description: Finds service resource records such as IP address, port, and text by a given full-service
name or by a given type of service.

SWRU368-June 2014 mDNS 95
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Detailed APIs www.ti.com

The user sets a service name Full or Part (see the following example) and should get:
* IP of service

* The port of service

* The text of service

Similar to the get host by hame method, a single-shot query with PTR type on the service name can make
a connection to the specific service and use it.

Note: The user only gets resource records of one adapted service.

Because all services adapted to the query send their answers at different times, use the API
sl_NetAppGetServiceList to see the RR of all answers.

Return:
0 — Success.
<0 — A kind of error

API name:
long sl_NetAppDnsGetHostByService(char *pServiceName,
unsigned char Servicelen,
unsigned char Family,
unsigned long pAddr([],
unsigned long *pPort,
unsigned short *pTextLen,
char *pText
):
Parameters:
Table 13-1. Parameters
Type Name In/Out Description
Partial or full name of the
looking service. This name is
set in the field name of the
query.
Example of full-service name:
Char* pServiceName In + PC1._ipp._tcp.local
e PC2._http._tcp.local
Example of partial service
name:
* PC1._ipp._tcp.local
* PC2._http._tcp.local
. . The length of the
unsigned char ServiceLen In pServiceName
. . Should be IPv4. Use the
unsigned char Family In variable SL_AF_INET .
. Contains the IP address of the
*
unsigned long pAddr Out looking service
unsigned long* pPort out Contains the_port address of
the looking service
96 mDNS SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
www.ti.com Detailed APIs
Table 13-1. Parameters (continued)
Type Name In/Out Description
The length of the text of the
looking service.
Used for input and output
Input:
The maximum length that the
user wants to get.
If the real text length is bigger
than the input value, the text is
cut to the input length and the
user loses part of the real text.
Output:
The length of the text of the
unsigned short* pTextLen In_Out looking service (this length
depends on the input length).
If the output length is equal to
input length it may indicate that
the text was cut)
Note: The input value helps in
tiny hosts because it saves
space, but risks not getting the
full text and should be used
carefully. To get the full text,
the value of the parameter
must be the maximum of text
size (256).
Char* pText Contains the text of the looking
service
Table 13-2 lists the defines for this API
Table 13-2. Defines for API
Name Description
SL_AF_INET Should be used for the Family input parameter
NETAPP_MAX_SERVICE_TEXT_SIZE Max text length = 256
Example:
long Status = 0;
char out_pText[NETAPP_MAX_SERVICE_TEXT_SIZE];
short inout_TextLen;
unsigned long 1Pv4Addr;
unsigned long out_pPort;
unsigned char ServiceNamelPP[50] = "_ipp._tcp.local™;
while (Status != 0)
{
//Find IPP service
inout_TextLen = NETAPP_MAX_SERVICE_TEXT_SIZE;
Status = sl_NetAppDnsGetHostByService( ServiceNamelPP,
strlen(ServiceNamelPP),
SL_AF_INET,
&amp; IPv4Addr,
&amp;out_pPort,
&amp; inout_TextlLen,
&amp;out_pText[0]
);
SWRU368-June 2014 mDNS 97

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Detailed APIs www.ti.com

printf(*one shot query on %s\n",ServiceNameff3);
printf(“'status %d\n",Status);

printf("'port %d\n",out_pPort);

printf(“"text len %d\n", inout_TextLen);

printfC1P%d._%d.%d.%d\n",SL_IPV4_BYTE(IPv4Addr,3),
SL_IPV4_BYTE(IPv4Addr,?2),

SL_1PV4_BYTE(IPv4Addr,1),
SL_1PV4_BYTE(I1Pv4Addr,0));
printf("Text %.*s\n\n", inout_TextlLen,out_pText);

13.5.2 API - Get Service List

Description: The get service list returns a list of services according to the parameters of the command.
The list is inserted into the out buffer (see Table 13-3).

The services are taken from the peer cache of the device. The peer cache is an internal memory
containing all peer services received by advertising or by responding. The device keeps the RRs of all
services in this peer cache (the services of up to eight peers are supported).

Three types of lists are available; each list contains different kinds of services and different types of RRs.
The type of the list is set as an input parameter to the API.

Possible types of list input parameters:

* Full-service parameters with text (service name, IP, port, text name)
» Full-service parameters (service name, IP, port)

« Short-service parameters (port and IP only), especially for tiny hosts

The different types of lists give the possibility to use the API with tiny hosts.

The user sets the number of return services and the start index in the peer cache (see Table 13-3).
Note: The services in the peer cache are updated frequently.

Return:

= 0 — No services were found

>0 — Number finding of services

<0 — A kind of error

API name:
int sl_NetAppGetServicelList(unsigned char IndexOffest,
unsigned char MaxServiceCount,

unsigned char Flags,

char *pBuffer,
unsigned long RxBufferlLength
):
Parameters:
98 mDNS SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

Detailed APIs

Table 13-3. Parameters

Type

Name

In/Out

Description

unsigned char

IndexOffest

Mentions the start row (entry)
in the peer cache. From this
entry the services are returned.
For example, the number 2
means that the first service that
is returned is in row number
two.

unsigned char

MaxServiceCount

The maximum services that are
returned (if they exist)
If the return number is smaller
than this value, all services
were found and there are no
more services.
If the return number is equal to
this value, there can be more
services in the peer cache.

unsigned char

Flags

Mentions the type (RRs) of the
services that are set in the list:
full service with text, full
service, or short service.

It is an ENUM number that is
taken from
SINetAppGetServiceListType_e
(see Table 13-4).

Char*

pBuffer

Out

The services are inserted into
this buffer.

The buffer contains an array of
services according to the return
number (if bigger than zero).
The type and kind of each
service is according to the
value of the flags.

unsigned long

RxBufferLength

The maximum length of
pBuffer.

If the returned data is bigger or
should be bigger than this
length, then a specific error is
returned (see error section).
In this case, the user must
decrease the maximum
returned services number
(MaxServiceCount), or change
the type of the list to get a
smaller service.

The length of the data that is
returned must be smaller than
NWP RX packet (about 1480),
or an error is returned.
The returned length is a
multiply of MaxServiceCount
and the size of service struct
(that is set according to flags
value).

Table 13-4 lists the user defines for this API:

SWRU368—-June 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

mDNS 99


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Detailed APIs www.ti.com
Table 13-4. User Defines
Name Description
typedef enum
{
SL_NET_APP_FULL_SERVICE_WITH_TEXT_IPV4_TYPE =
1, Should be used for the Flags parameter.
SL_NET_APP_FULL_SERVICE_IPV4_TYPE, Indicates the type of the services that are returned.

SL_NET_APP_SHORT_SERVICE_IPV4_TYPE,

} SINetAppGetServicelListType_e;

typedef struct

{
unsigned long service_ipv4;
unsigned short service_port;
unsigned short Reserved;

}SINetAppGetShortServicelpv4List_t;

Type of short service

typedef struct
{

unsigned long service_ipv4;

unsigned short service_port;

unsigned short Reserved;

unsigned char
service_name[NETAPP_MAX_SERVICE_NAME_SIZE];

unsigned char
service_host[NETAPP_MAX_SERVICE_HOST_NAME_SIZE];
}SINetAppGetFullServicelpv4List_t;

Type of full service

typedef struct
{

unsigned long service_ipv4;

unsigned short service_port;

unsigned short Reserved;

unsigned char
service_name[NETAPP_MAX_SERVICE_NAME_SIZE];

unsigned char
service_host[NETAPP_MAX_SERVICE_HOST NAME_SIZE];

unsigned char
service_text[NETAPP_MAX_SERVICE_TEXT_SIZE];
3}SINetAppGetFullServiceWithTextlpv4List_t;

Type of short service with text

Example:

char BufferList[1500];

int Status;

int index,servicelndex,serviceCount;

unsigned int 1Pv4Addr;

SINetAppGetShortServicelpv4lList_t *ShortService;
SINetAppGetFullServicelpv4lList_t *FullService;
SINetAppGetFullServiceWithTextlpv4List t *FullServiceWithText;
/

R 4

//Get all full services that are in the peer cache.

//buffer with get service list
memset(BufferList,0,sizeof(BufferList));

//Full service list with text index O count 8
servicelndex = 0;

serviceCount = 9;

Status =

100

mDNS SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Detailed APIs

sl_NetAppGetServiceList(servicelndex,serviceCount,SL_NET_APP_FULL_SERVICE_IPV4_TYPE,BufferList,150
0);

printf('getServicelList StartServicelndex %d\n num of requested services %d\n service struct type
%d\n num of returned services %d\n",

servicelndex,serviceCount,SL_NET_APP_FULL_SERVICE_IPV4_TYPE,Status);
printf(“service list is depicted below: \n ™);

if(Status >0)
{
for(index = 0; index < Status; index ++)

{

FullService =
(SINetAppGetFullServicelpv4List_t*) (&amp;BufferList[index*sizeof(SINetAppGetFullServicelpv4List_t)
D:

printf("index %d\n", index);
IPv4Addr = FullService->service_ipv4;

printf("IP
%d.%d.%d.%d\n"",SL_1PV4_BYTE(IPv4Addr,3),SL_I1PV4_BYTE(IPv4Addr,2),SL_IPV4_BYTE(IPv4Addr,1),SL_IPV4_
BYTE(IPv4Addr,0));

//printf(service_ipv4 %x\n",FullService->service_ipv4);
printf(“'service_port %d\n",FullService->service_port);
printf(“'service_name %s\n",FullService->service_name);
printf("service_host %s\n",FullService->service_host);
printf(C'\n\n"");

}
}

/

FkkkkhFkdkkkhAk [

/

Fkkkkh Kk dkkkh Ak [

//Get short services that are in the peer cache.

//buffer with get service list
memset(BufferList,0,sizeof(BufferList));

//Short service list with text index 0 count 10
servicelndex = 0;
serviceCount = 10;

Status =
sl_NetAppGetServiceList(servicelndex,serviceCount,SL_NET_APP_SHORT_SERVICE_IPV4_TYPE,BufferList,15
00);

printf(‘'getServicelList StartServicelndex %d\n num of requested services %d\n service struct type

%d\n num of returned services
servicelndex,serviceCount,SL_NET_APP_SHORT_SERVICE_IPV4_TYPE,Status);

printf("service list is depicted below: \n "™);

if(Status > 0)

{

for(index = 0; index < Status ; index ++)
{

shortService =

(SINetAppGetShortServicelpv4List_t*)(&amp;BufferList[index*sizeof(SINetAppGetShortServicelpv4lList_

SWRU368—-June 2014 mDNS 101

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Detailed APIs www.ti.com

191 ) S

printf("index %d\n", index);
IPv4Addr = ShortService->service_ipv4;

printf("IP
\n",SL_IPV4_BYTE(IPv4Addr,3),SL_IPV4 BYTE(IPv4Addr,2),SL_IPV4 BYTE(IPv4Addr,1),SL_IPV4 BYTE(IPV4Ad
dr,0));

//printf('service_ipv4 %x\n',ShortService->service_ipv4);
printf(*'service_port %d\n",ShortService->service_port);
printf("\n\n"");

}
}

/
***************/

/

***************/

//Get full services with text with loop that are in the peer cache.

//buffer with get service list
memset(BufferList,0,sizeof(BufferList));

//Full service list with text index O count 3
servicelndex = 0;

serviceCount = 3;

Status = O;

do
{

servicelndex = servicelndex + Status;

Status =
sl_NetAppGetServiceList(servicelndex,serviceCount,SL_NET_APP_FULL_SERVICE_WITH_TEXT_IPV4_TYPE,Buff
erList,1500);

printf(‘'getServicelList StartServicelndex %d\n num of requested services %d\n service struct
type %d\n num of returned %d\n",

servicelndex,serviceCount,SL_NET_APP_FULL_SERVICE_WITH_TEXT_IPV4_TYPE,Status);
printf("service list is depicted below: \n ");

if(Status > 0 )
{
for(index = 0; index < Status ; index ++)

{
FullServiceWithText =

erviceWithTextlpv4List_t*)(&amp;BufferList[index*sizeof(SINetAppGetFullServiceWithTextlpv4List_t)]
):

printf(*"index %d\n",index);

IPv4Addr = FullServiceWithText->service_ipv4;

printf("IP

_IPV4_BYTE(IPv4Addr,3),SL_IPV4_BYTE(IPv4Addr,2),SL_IPV4_BYTE(IPv4Addr,1),SL_IPV4_BYTE(IPv4Addr,0))

//printf(service_ipv4 %x\n",FullServiceWithText->service_ipv4);

printf(“'service_port %d\n",FullServiceWithText->service_port);

102

mDNS SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Detailed APIs

printf(“'service_name %s\n",FullServiceWithText->service_name);
printf("service_host %s\n",FullServiceWithText->service_host);
printf("'service_text %s\n",FullServiceWithText->service_text);
printf("'\n\n"");

}

Iwhile( (Status == serviceCount ));

13.5.3 API - Register Service

Description: This API registers a service and advertises it if MDNS is started and the device has an IP
address (STA) or up (P2P or AP). The service is kept in the mDNS database; only one registration is
needed. This registered service is offered by the application.

The service name should be the full-service name according to DNS-SD RFC, meaning the value in the
name field of the SRV answer.

Example of a service name:
e PC1. ipp._tcp.local
e PC2_server._ftp. tcp.local

If the service is unique (see the Options parameter in Table 13-5), mDNS probes the service name to
ensure its uniqueness before starting to announce the service on the network. If it is not unique, a number
will be added to identify it.

Return
= 0 — Success
<0 — A kind of error

APl name
int sl_NetAppMDNSRegisterService( const char* pServiceName,
unsigned char  ServiceNamelLen,
const char* pText,
unsigned char  TextlLen,
unsigned short Port,
unsigned long TTL,
unsigned long Options);
Parameters:
Table 13-5. Parameters
Type Name In/Out Description
The service name.
. Example of service name:
const char* pServiceName In . PC1._ipp._tcp.local
* PC2_server._ftp._tcp.local
unsigned char ServiceNameLen In The length of pServiceName
The description of the service;
" o e o mentoned 1 e
service IPP, FTP, and so forth)
unsigned char TextLen In The length of pText
unsigned short Port In The port on the target host port
unsigned long TTL In The TTL of the service
SWRU368—-June 2014 mDNS 103

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Detailed APIs www.ti.com
Table 13-5. Parameters (continued)
Type Name In/Out Description

Bitwise parameters:

Bit O - Service is unique (the
service must be unique).
unsigned long Options In Bit 31 - For internal use if the
service should be added or
deleted (set means ADD)
Bit 1-30 for future use

Example:
unsigned char AddServicel[40] = "SimpleLinkPrinter553321._ipp.-_tcp.local";

//Register IPP service
Status = sl_NetAppMDNSRegisterService(AddServicel,
strlen(AddServicel),
"payper=A3;size=5"",
strilen('payper=A3;size=5"),
1000,120,1);
printf("'Register service %s \n\rstatus %d\n\n",AddServicel,Status);

13.5.4 API — Unregister Service

Description: This APl unregisters mDNS service, deletes the service from mDNS DB, and sends a
goodbye frame if the mDNS is started and has an IP address / UP.

The unregistered mDNS service is a service that the application no longer needs to provide. The name of
the deleted service should be the same as the name of the service that was previously registered

Note: If the service name is null, all services are deleted and the mDNS machine stops and starts, then
the peer cache is deleted. Other services which were not deleted are retained in the system, and they do
not need to be registered again.

Return:
= 0 — Success
<0 — A kind of error

APl name:
int sl_NetAppMDNSUnRegisterService( const char *pServiceName,
unsigned char ServiceNameLen);
Parameters:
Table 13-6. Parameters
Type Name In/Out Description
The service name that should
be deleted.
Example of service hame:
const char* pServiceName In » PC1._ipp._tcp.local
» PC2_server._ftp._tcp.local
Null name means delete all
services.
unsigned char ServiceNamelLen In The length of pServiceName
104 mDNS SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

Detailed APIs

Example:

unsigned char AddServicel[40] = "SimpleLinkPrinter553321. ipp._tcp.-local";

//Register IPP service
Status = sl_NetAppMDNSRegisterService(AddServicel,
strlen(AddServicel),
""payper=A3;size=5",
strilen("'payper=A3;size=5"),
1000,120,1);
printf("'Register service %s \n\rstatus %d\n\n",AddServicel,Status);

13.5.5 API - Set Masking Receive Services

Description: This API indicates which user-defined service types to ignore. The mask is a 32-bit ULONG
type. Each bit represents a service type (see Table 13-7). If a bit is set, the corresponding service type
specified will not be set in the peer cache and will not be shown to the user.

The peer cache contains up to eight services. By using the masking, the user can prevent unwanted

services from entering the peer cache, or save places for desired services.

For example, if the user is interested, RAOP and Airplay services should mask all the other services.

Default is zero, with no event mask.

Return:
= 0 — Success
<0 — A kind of error

APl name:

long sl_NetAppSet(unsigned char Appld ,
unsigned char Option,
unsigned char OptionLen,

unsigned char *pOptionValue);

Table 13-7 lists the defines for this API:

Table 13-7. Defines for API

Name Description
SL_NET_APP_MDNS_ID Used as Appld parameter in sl_NetAppSet function
NETAPP_SET_GET_MDNS_QEVETN_MASK_OPT Used as Option parameter in sl_NetAppSet function

SWRU368—-June 2014
Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated

mDNS 105


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Detailed APIs www.ti.com
Table 13-7. Defines for API (continued)
Name Description
#define SL_NET_APP_MASK_IPP_TYPE_OF SERVICE
0x00000001

#define

SL_NET_APP_MASK_DEVICE_INFO_TYPE_OF SERVICE

0x00000002

#define SL_NET_APP_MASK_HTTP_TYPE_OF SERVICE

0x00000004

#define

SL_NET_APP_MASK_HTTPS_TYPE_OF SERVICE

0x00000008

#define

SL_NET_APP_MASK_WORKSATION_TYPE_OF SERVICE

0x00000010

#define SL_NET_APP_MASK_GUID_TYPE_OF SERVICE

0x00000020

#define SL_NET_APP_MASK_H323_TYPE_OF SERVICE

0x00000040

#define SL_NET_APP_MASK_NTP_TYPE_OF SERVICE

0x00000080

#define

SL_NET_APP_MASK_OBJECITVE_TYPE_OF_SERVICE

0x00000100

#define SL_NET_APP_MASK_RDP_TYPE_OF SERVICE

0x00000200

#deFfine

SL_NET_APP_MASK_REMOTE_TYPE_OF_ SERVICE

0x00000400

#define SL_NET_APP_MASK_RTSP_TYPE_OF SERVICE

0x00000800

#define SL_NET_APP_MASK_SIP_TYPE_OF SERVICE
0x00001000

#define SL_NET_APP_MASK_SMB_TYPE_OF SERVICE

0x00002000

#define SL_NET_APP_MASK_SOAP_TYPE_OF SERVICE

0x00004000

#define SL_NET_APP_MASK_SSH TYPE_OF SERVICE

0x00008000

#define

SL_NET_APP_MASK_TELNET_TYPE_OF_ SERVICE

0x00010000

#define SL_NET_APP_MASK_TFTP_TYPE_OF SERVICE

0x00020000

#deFfine

SL_NET_APP_MASK_XMPP_CLIENT_TYPE_OF SERVICE

0x00040000

#define SL_NET_APP_MASK_RAOP_TYPE_OF SERVICE

0x00080000

#define SL_NET_APP_MASK_ALL_TYPE_OF SERVICE

OXFFFFFFFF

Masking types

Example:
//mask IPP service

unsigned int EventMask = SL_NET_APP_MASK_IPP_TYPE_OF SERVICE;

Status = sl_NetAppSet(SL_NET_APP_MDNS_ID,

NETAPP_SET_GET_MDNS_QEVETN_MASK_OPT,

sizeof(EventMask), (unsigned char*)&amp;EventMask );

printf("event Mask status %d\n",Status);

106

mDNS

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014

Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Detailed APIs

13.5.6 API — Set Continuous Query

Description: This API sets a continuous query. The query can be on full service or on type of service.
Default is null — no query.

For example:

» For full service, the name should be PC1. ipp._tcp.local.

» For a type of IPP services, the name should be _ipp._tcp.local.
» For stopping the continuous query, the name should be null.

Note:

* Only one continuous query can be set. A new setting stops the old query and sets a new one. If the
name is null, the old query is stopped and no continuous query is configured.

» The answers are not given automatically to the user. To see the received services the user should use
the get service list operation (see Section 13.5.2).

Return:
= 0 — Success
<0 — A kind of error

APl name:
long sl_NetAppSet( unsigned char Appld ,
unsigned char Option,

unsigned char OptionLen,
unsigned char *pOptionValue);

Table 13-8 lists the defines for this API:

Table 13-8. Defines for API

Name Description
SL_NET_APP_MDNS_ID Used as Appld parameter in sl_NetAppSet function
NETAPP_SET_GET_MDNS_CONT_QUERY_OPT Used as Option parameter in sl_NetAppSet function
Example:
unsigned char name[40] = *_ipp-_tcp.-local™;

//1ooking for IPP services with continuous query
Status = sl_NetAppSet(SL_NET_APP_MDNS_ID ,NETAPP_SET_GET_MDNS_CONT_QUERY_OPT,strlen(name), name);
printf(*'cont query status %d\n",Status);

13.5.7 API - Set Timing Parameters for Advertising

Description: This API reconfigures the timing parameters employed by mDNS when sending service
announcements. The published period starts from t ticks and can be expanded telescopically with 2 to the
power of k factor. The number of repetitions per advertisement is p, the interval between each repeated
advertisement is interval ticks, and the number of announcement period is max_time.

By default, the initial period is set to 1 second, with k = 1 (the period doubles each time), p = 1 (no
repetition), retrans_interval = 0 (no time interval), period_interval = OxFFFF FFFF (max period interval),
and max_time = 3 (number of advertisement).

Return:

=0 — Success

<0 — A kind of error

APl name:

SWRU368—-June 2014 mDNS 107

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Detailed APIs www.ti.com
long sl_NetAppSet( unsigned char Appld ,
unsigned char Option,
unsigned char OptionLen,
unsigned char *pOptionValue);
Table 13-9 lists the defines for this API:
Table 13-9. Defines for API
Name Description
SL_NET_APP_MDNS_ID Used as Appld parameter in sl_NetAppSet function
NETAPP_SET_GET_MDNS_TIMING_PARAMS_OPT Used as option parameter in sl_NetAppSet function
typedef struct « t - Number of ticks for the initial period. Default is 100 ticks for
{ 1 second.
unsigned long t * p - Number of repetitions. Default value is 1.
unsigned long p « K - Telescopic factor. Default value is 1.
unsianed lTon K- « retrans_interval - Number of ticks to wait before sending out
9 d1 9 R,t Int I repeated announcement messages. Default value is 0.
uns!gne ong e fans n erva « period_interval - Number of ticks between two announcement
unsigned long  Maxinterval; periods. Default value is OXFFFF FFFF.
unsigned long max_time; * max_time - Number of announcement period to use for the
}SINetAppServiceAdvertiseTimingParameters_t; advertisement. Default value is 3.
Example:

SINetAppServiceAdvertiseTimingParameters_t  TimingParams;

TimingParams.t = 200;

TimingParams.p = 2;

TimingParams.k = 2;
TimingParams.Retransinterval = 0O;
TimingParams.Maxinterval = OXFFFfffff;

TimingParams.max_time = 5;

// announcement timing set

Status = sl_NetAppSet(SL_NET_APP_MDNS_1D
,NETAPP_SET_GET_MDNS_TIMING_PARAMS_OPT,sizeof(TimingParams), (unsigned char*)&amp;TimingParams );

printf("timing status %d\n",Status);

13.5.8 API — Get Event Mask

Description: This API gets the configured event mask.
Return:

=0 — Success

<0 — A kind of error

API name:
long sl_NetAppGet( unsigned char Appld ,
unsigned char Option,

unsigned char OptionLen,
unsigned char *pOptionValue);

Example:
char BufferList[1500];
unsigned char GetLen = 100;
unsigned int *GetEventMask;
108 mDNS SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Detailed APIs

//get event mask
memset(BufferList,0,sizeof(BufferList));
GetLen = 100;

Status = sl_NetAppGet(SL_NET_APP_MDNS_ID
,NETAPP_SET_GET_MDNS_QEVETN_MASK_OPT,&amp;GetLen,BufferList );

GetEventMask = (unsigned int*)(BufferList);
printf("'Get event Mask:\n status %d\n event mask %d\n",Status,*GetEventMask);

13.5.9 API - Get Continuous Query

Description: This API gets the configured continuous query.

Return:
=0 — Success
<0 — A kind of error

API name:
long sl_NetAppGet( unsigned char Appld ,
unsigned char Option,

unsigned char OptionlLen,
unsigned char *pOptionValue);

Example:
char BufferList[1500];
unsigned char GetlLen = 100;

//get continuous query
memset(BufferList,0,sizeof(BufferList));
GetlLen = 100;

Status = sl_NetAppGet(SL_NET_APP_MDNS_ID
,NETAPP_SET_GET_MDNS_CONT_QUERY_OPT ,&amp;GetLen,BufferList );

if(GetLen > 0)

{
printf("'Get continuous query:\n status %d\n query %s\n",Status,BufferList);

}

else

{
printf(*'Get continuous query:\n status %d\n no query \n",Status);

13.5.10 API - Get Timing Parameters for Advertising
Description: This API gets the configured timing parameters.

Return:
= 0 — Success
<0 — A kind of error

API name:
long sl_NetAppGet( unsigned char Appld ,
unsigned char Option,

SWRU368—-June 2014 mDNS 109

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Detailed APIs www.ti.com

unsigned char OptionLen,
unsigned char *pOptionValue);

Example:

char BufferList[1500];

unsigned char GetLen = 100;
SINetAppServiceAdvertiseTimingParameters_t  *GetTimingParams;

//get timing parameters
memset(BufferList,0,sizeof(BufferList));
GetLen = 100;

Status = sl_NetAppGet(SL_NET_APP_MDNS_ID
,NETAPP_SET_GET_MDNS_TIMING_PARAMS_OPT,&amp;GetLen,BufferList );

GetTimingParams = (SINetAppServiceAdvertiseTimingParameters_t *)(BufferList);

printf(” Get timing parameters:\n status %d\n start time(ticks) %d\n Numbr of packets each
cycle %d\n Factor %d\n Retransmit on number of packets each cycle %d\n Max Interval between cycle
%u\n Number of cycles %d\n",

Status,GetTimingParams->t,
GetTimingParams->p,
GetTimingParams->k,
GetTimingParams->Retransinterval,
GetTimingParams->Maxinterval,

GetTimingParams->max_time);

110

mDNS SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 14
l TEXAS SWRU368-June 2014

INSTRUMENTS

Serial Flash File System

Topic Page
I @ Y = = 112
14.2 File DOWNIOAd and Creation .....e. e eieieeeeeetettseneeea et es s eneeeaeanananseneaeananenans 112
14.3 File Download, OPen fOr WEITE. ... ettt e e e e e s e e e e e e ananenes 112
I e L= @ T o = o G == T 113
145 Secure SYStem FileS ...ttt 113
14.6 CommMit Creation FIAg . .cociiiiiiiii et e et e e e e e e e aaaaaaes 113
S T Yo 1 1V A = PP 113
T o ] T 1 PP 113
I TS T | = LU= 114
14.10 Option fOr File CrEatiON .. uuiuiuie ettt ittt e e e e e s e e s e e eaenea e s e eeenannns 114
I R O o o [T == 0 1 ] = PP 115

SWRU368-June 2014 Serial Flash File System 111

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Overview www.ti.com
14.1 Overview
In a secure file system:
» The file system tables are encrypted.
» The creation of secure files is enabled.
* The maximum number of files supported is 128.
» The file system is blocked after three security alerts.
Secure files characteristics:
» Kept encrypted on the storage
e Authenticated
» Read or write access only allowed to authorized users
14.2 File Download and Creation
Execute the file create command with the following parameters:
* File name
*  Maximum file size
» Creation flags
* For a secure file, a master token, which is an in/fout parameter
* Return file handle, which is used to write the file
Execute the file write command with the following parameters:
» File handle
» Buffer to write
* Size to write
Execute the file close command with the following parameters:
Note: For a secure file, which requires a signature, the certificate file should be downloaded before the
close command.
» File handle
» For a secure file with a signature test:
— Certificate file name (the certificate file should exist on the storage).
— Signature (256 or 128 bytes)
14.3 File Download, Open for Write
Execute the file open for write command with the following parameters:
* File name
» For a secure file, a write token, which is an in/out parameter
» Return file handle, which is used to write the file
Execute the file write command with the following parameters:
* File handle
» Buffer to write
» Size to write
Execute the file close command with the following parameters:
* File handle
» For a secure file with a signature test:
— Certificate file name (the certificate file should exist on the storage).
— Signature
112 Serial Flash File System SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com File Open for Read

14.4

14.5

14.6

14.7

14.8

File Open for Read

Execute the file open for read command with the following parameters:
* File name

» For a secure file, a read token, which is an in/out parameter

» Return file handle, which is used to write the file

Execute the file read command with the following parameters:
» File handle

» Buffer to read

» Sizetoread

Execute the file close command with the following parameter:
» File handle

Secure System Files

These system files are secured:

» Service pack

« SLINK_FILE_PAC_FILE_ID

* SLINK_FILE_FAST_CONNECT_FRAME

e SLINK_FILE_PREFERRED_NETWORKS
e« CONFIG_TYPE_SMART_CONFIG_KEYS.

Commit Creation Flag

When creating a file, the commit flag makes the file fail-safe by creating a mirror. Using the commit flag
doubles the file storage size.

When opening a file for read, the last valid file mirror is chosen as the active mirror.

Security Alert

If the device detects a security intrusion, it creates a security alert. Three security alerts lock the file
system, which can only be opened by formatting the storage. In the R1 release, the lock does not execute.

Some security alerts wipe the storage, although not in R1.

Tokens

Tokens are relevant only for secure files. Secure files can only be created on a secured chip; otherwise
the secure file options are ignored.

When a secure file is created, the following tokens are created:
* Master

* Read/Write

e Read only

e Write only

The master token is returned upon file creation (the create function has an in/out parameter which is the
token). The other tokens can be received by invoking the Getinfo function with the token as the parameter.
If the Getlnfo function is invoked with the master token, it returns the other three tokens. The function
always returns tokens which have a level lower than the input token.

Without an appropriate token the user cannot open the file for read or write or delete the file. Deleting a
file requires the master token.

Using the read token, the user can open the file for read and not for write. This could be used in the case
of a logo file, which may be displayed on the web pages but not changed.

SWRU368-June 2014 Serial Flash File System 113
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Signature www.ti.com

14.9

Trying to open a secure file with an invalid token (or NULL token) creates a security alert.

When the file is opened for write, all the tokens other than the master token are recreated (the file creator
can define different behavior when creating the file = STATIC option).

More token creation options:

» Creating a secure file with public read permission (no token required for read) or public write (no token
required for write).

* When creating the file, the master token may be set by the creator (vendor option).

Signature

Secure files are created with a signature test, by using the no_signature_test flag, or no file authentication
occurs.

The file signature is supplied as part of the file close function.

A file created with a signature test authenticates during the close function and every time the file is
opened for read/write.

The signature is RSA-SHA1 (key can be sized 1024 or 2048). Certificate chain is also supported.

To sign the files the following steps are required:
1. Create a private key: WOpenSSL-Win32\\bin\\openssl genrsa -out [PrivateKey.PEM] [1024]|2048]

2. Transform the private key to DER format: \OpenSSL-Win32\\bin\\openssl rsa -in [PrivateKey.PEM] -
inform PEM -out [PrivateKey.DER] -outform DER

3. Create a certificate request using the private key DER format: WOpenSSL-Win32\\bin\\openssl req
—new —key [PrivateKey.DER] —out [certific.pem]

4. Send the certificate request [Certfile.pem] file to TI, to receive a TI certificate.

5. Transform the certificate from .pem format to .der format; "C:\\OpenSSL-Win32\\bin\\openss| x509 -in
[Certfile.pem] -inform PEM -out [Certfile.der] -outform DER

6. Download the Tl certificate [Certfile.der] as a nonsecure file to the device.

7. The private key can be used to create the signature for the secure files. \OpenSSL-
Win32\\bin\\openssl dgst -binary -shal -sign [PrivateKey.PEM] -out [SecureFilel_Signature.bin]
[InputFile.txt]

14.10 Option for File Creation

A definition of a possible option for file creation follows:
typedef enum
{
_FS_MODE_OPEN_READ =0,
_FS_MODE_OPEN_WRITE,
_FS_MODE_OPEN_CREATE,
_FS_MODE_OPEN_WRITE_CREATE_IF_NOT_EXIST
}SIFsFileOpenAccessType_e;

A definition of the possible flags for file creation follows:
typedef enum

{

_FS_FILE_OPEN_FLAG_COMMIT = O0x1, //MIRROR - for fail safe
_FS_FILE_OPEN_FLAG_SECURE = 0x2, //SECURE
_FS_FILE_OPEN_FLAG_NO_SIGNATURE_TEST = 0x4, //Relevant to secure file only
_FS_FILE_OPEN_FLAG_STATIC = 0x8, // Relevant to secure fTile only
_FS_FILE_OPEN_FLAG_VENDOR = 0x10, // Relevant to secure file only
_FS_FILE_PUBLIC_WRITE= 0x20, //Relevant to secure file only, the file can be

114 Serial Flash File System SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Code Example

opened for write without Token

_FS_FILE_PUBLIC_READ = 0x40 //Relevant to secure file only, the file can be
opened for read without Token

}SIFileOpenFlags_e;

14.11 Code Example
//0pen for write non-secure file with size 63K
RetvVal = sl_FsOpen((unsigned char *)DeviceFileName,
FS_MODE_OPEN_CREATE(63*1024 , 0 ),
&amp;MasterToken,

&amp;FileHandle);

//0pen for write secure file with size 63K
RetVal = sl_FsOpen((unsigned char *)DeviceFileName,

FS_MODE_OPEN_CREATE(63*1024 , _FS_FILE_OPEN_FLAG_SECURE |
_FS_FILE_OPEN_FLAG_NO_SIGNATURE_TEST),

&amp ;MasterToken,
&amp;FileHandle);

//0pen for write secure file with signature with size 63K
RetVal = sl_FsOpen((unsigned char *)DeviceFileName,
FS_MODE_OPEN_CREATE(63*1024 , _FS FILE_OPEN_FLAG_SECURE),
&amp;MasterToken,
&amp;FileHandle);

//rite to file
RetVal = sl_FsWrite(FileHandle,
(unsigned int)Offset
(unsigned char *)Buffer, BufferSize);

//Close
RetVal = sl_FsClose( FileHandle, 0, 0, 0);

//Close with signature

RetVal = sl_FsClose(DeviceFileHandle, pCeritificateFileName, pSignature , SignaturelLen);

SWRU368-June 2014 Serial Flash File System 115

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 15
l TEXAS SWRU368-June 2014

INSTRUMENTS
Rx Filter
Topic Page
TR @ V=Y Y = PPN 117
15.2 Detailed DeSCriPtiON . ..ttt e ettt ettt a e a e e e e e a e n e e e n e 117
L TG T €= 1.1 0] = 117
T O == 11 o I (=T 119
L TS T = 3l 1 (T N o P 119
116  Rx Filter SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS

INSTRUMENTS

www.ti.com Overview

15.1

15.2

15.3

Overview

The Rx-filters module lets the user define which of the received frames will be transferred by the CC3100
to the host and which frames will be dropped. The Rx-filters can be activated during AP-connection and
during promiscuous mode (disconnect mode).

Detailed Description
Every received frame traverses through a series of decision trees that determine how the frame is treated.

The decision trees are composed of filter nodes. Each node has its filter rule, action, and trigger. The tree
traversal process starts with the trees’ root nodes: if the filter rule and trigger of the root node are TRUE,
the action of the root note is performed and the frame continues to the child nodes. Filter rules are specific
protocol header values:

* MAC layer: Frame type, frame sub-type, BSSID, source MAC address, destination MAC address, and
frame length

* LLC layer: Protocol type

» Upper layers: IP version, IP protocol, source IP address, destination IP address, ARP operation, ARP
target IP address, source port number, and destination port number

Possible triggers:

* When role is... (station/AP/promiscuous)

« When connection state is... (connected/disconnected)
* When counter reaches X

Possible actions:

» Drop the packet (do not pass it to the host)
e Auto reply using pre-defined Tx template

» Increase or decrease the counter value

Trees traversal is stopped when the frame reaches a DROP action in one of the trees. Traversing is done
layer by layer among all the trees.

The user can define a combined-filter node. This node has two parent nodes (unlike a regular node which
only has one), and is checked only if one or both (user-defined) of its two parent nodes is TRUE. For
example: if (node_1 OR node_2).

Examples

Example 1 — Supposing a user has the following requirements:

* Receive WLAN data broadcast frames only from two specific MAC addresses

» Receive all WLAN unicast frames, except for frames with a certain SRC_IP address range
» If a unicast frame is received from MAC address AA.AA.AA, increase counter_1.

» If a unicast frame is received from MAC address BB.BB.BB, increase counter_2.

» If a unicast UDP frame is received from MAC address AA.AA.AA or BB.BB.BB, pass only packets from
port 5001.

The following trees should be created: Figure 15-1

SWRU368-June 2014 Rx Filter 117
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
Examples www.ti.com
DST_MAC_ADDR != DST_MAC_ADDR =
‘BROADCAST ‘BROADCAST
— \ J
SRC_IP_ADDR = SRC_MAC_ADDR = SRC_MAC_ADDR =
‘192.168.X.X' ‘AAARAAADAD AN ‘BB.BE.BB.BE.BB.BE’ F“A!‘SE_TE’PE:
DROP Counter 1++ Counter 24+
SRC_MAC_ADDR = SRC_MAC_ADDR =
PROTOCOL = ‘UDP’ ‘CC.CC.CC.CC.CcC.CcC’ ‘DD.DD.DD.DD.DD.D*
DROP DROP |
PORT !="5001"
DROP
Figure 15-1. Trees Example 1
Example 2 — Supposing a user has the following requirements:
* Receive only WLAN management beacon frames from all MAC addresses
The following trees should be created:Figure 15-2
118  Rx Filter SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Creating Trees

FRAME_TYPE != FRAME TYPE=
‘MANAGEMENT . — -
DROP MANAGEMENT

L - L

FRAME_SUBTYPE |=
‘Beacon (0x80)"
DROP

Figure 15-2. Trees Example 2

15.4 Creating Trees

» Trees are created by the user. The user adds the filter nodes individually and defines the filter tree
hierarchy.

» Trees can also be created and applied internally by the system.

» Filters can be created as persistent filters that are saved in the FLASH memory and loaded at the
system startup.

» The maximal number of filter nodes is 64. 14 filter nodes are used by the system, and the remaining 50
nodes are for the user.

» Filters can be created, removed, enabled, and disabled. After filters are created, they must be enabled
to start filtering.

15.5 Rx Filter API
WlanRxFilterAdd — Adds a new filter to the system
sl_WlanRxFilterEnableDisable — Enables or disables filters
sl_WIlanRxFilterRemove — Removes filter
sl_WlanRxFilterGetGeneralStatisticsInfo — Retrieves general statistics information regarding the filters
sl_WlanRxFilterGetNodeStatisticsInfo — Retrieves statistics information regarding a specific filter
sl_WIlanRxFilterSaveToFlash — Saves the persistent filters to flash
sl_WlanRxFilterUpdateFilterArgs — Updates Args of an existing filter
sl_WIlanRxFilterPrePreparedFiltersOperation — Changes or retrieves the internal filter creation default

15.5.1 Code Example
#include "datatypes.h"
#include "simplelink.h"
#include "protocol.h"
#include "driver.h"
#include "debug.h"

SWRU368—-June 2014 Rx Filter 119

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Rx Filter API www.ti.com

void RxFiltersExample( char input )

{

SIrxFilterID_t Filterld;
SIrxFilterRuleType_t RuleType;
SIrxFilterFlags_t FilterFlags;
SIrxFilterRule_t Rule;
SIrxFilterTrigger_t Trigger;
SIrxFilterAction_t Action;

SIrxFilterOperationResult_t RetVal;
unsigned char MyLabComplPAddress[4] = {0x0A,0x01,0x04,0x0A};
unsigned char MyMAsk[4] = {OxFF,OxFF,OxFF,0xFF};

switch(input)

case "1": //Create filter

//Rule definition

RuleType = HEADER;

FilterFlags. IntRepresentation = RX_FILTER_BINARY ;

Rule._HeaderType.RuleHeaderfield = IPV4_SRC_ADRRESS_FIELD;

Rule_HeaderType.RuleCompareFunc = COMPARE_FUNC_EQUAL ;

memcpy (
Rule _HeaderType.RuleHeaderArgsAndMask.RuleHeaderArgs.RxFilterDB4BytesRuleArgs[0],
MyLabComplPAddress , 4 );

memcpy( Rule._HeaderType.RuleHeaderArgsAndMask.RuleHeaderArgsMask, MyMAsk , 4 );

//parent

Trigger.ParentFilterID = O;

//When RX_FILTER_COUNTER7 is bigger than O

Trigger.Trigger = RX_FILTER_COUNTER7;

Trigger.TriggerCompareFunction = TRIGGER_COMPARE_FUNC_EQUAL;

Trigger.TriggerArg = O;

//connection state and role

Trigger.TriggerArgConnectionState. IntRepresentation =
RX_FILTER_CONNECTION_STATE_STA_HAS_IP;

Trigger.TriggerArgRoleStatus. IntRepresentation = RX_FILTER_ROLE_STA;

//Action

Action.ActionType. IntRepresentation = RX_FILTER_ACTION_ON_REG_INCREASE;

Action._ActionArg[ O 7 = RX_FILTER_COUNTERG6;

RetVal = (SIrxFilterOperationResult_t)sl_WlanRxFilterAdd( RuleType,
FilterFlags,

&amp;Rule,
&amp;Trigger,
&amp;Action,
&amp;Filterld);
break;
case "2 : //remove filter
{
SIrxFilterldMask_t RxFilterldMask ;
//remove all
memset( RxFilterldMask, OxFF , 16 );
Retval = sl_WlanRxFilterRemove( RxFilterldMask );
3
break;
case "3" : //enable/disable filter
{
SirxFilterldMask_t RxFilterldMask ;
//Enable All
memset( RxFilterldMask, OxFF , 16 );
RetvVal = sl_WlanRxFilterEnableDisable( RxFilterldMask);
3
break;
case "47://Get filters statistics
{
SIrxFilterStatisticsOperation_t ResetStatistics = 0;
120 Rx Filter SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Rx Filter API

unsigned long StatslnputCounter;

unsigned long StatsMatchCounter;

unsigned long StatsMaxProcessingTime[2];
unsigned long StatsAverageProcessingTime[2];

RetVal = sl_WlanRxFilterGetGeneralStatisticsInfo( ResetStatistics,
&amp;StatsinputCounter, &amp;StatsMatchCounter, StatsMaxProcessingTime,
StatsAverageProcessingTime );

3
break;
case "5": //save the persistent filters to flash
Retval = sl_WlanRxFilterSaveToFlash();
break;
case "6" : //change the creation default of the internal filters

{
SIrxFilterPrePreparedFilterstOperation_t FilterPrePreparedFiltersOperation =
SL_FILTER_PRE_PREPARED_SET_CREATE_REMOVE_STATE;
SIrxFilterPrePreparedFiltersMask_t FilterPrePreparedFiltersMask ;

memset(FilterPrePreparedFiltersMask, 0, sizeof(FilterPrePreparedFiltersMask));
FilterPrePreparedFiltersMask[ O 7 = OxFO;
Retval = sl_WlanRxFilterPrePreparedFiltersOperation(
FilterPrePreparedFiltersOperation , FilterPrePreparedFiltersMask );
3
break;
case "7" : //update filter args
{
SIrxFilterRuleHeaderArgsAndMask_t FilterRuleHeaderArgsAndMask;
unsigned char BinaryRepresentation = 1;
Filterld = 9;
memcpy( FilterRuleHeaderArgsAndMask.RuleHeaderArgs.RxFilterDB4BytesRuleArgs,
MyLabComplIPAddress , 4 );
memcpy( FilterRuleHeaderArgsAndMask.RuleHeaderArgsMask, MyMAsk , 4 );
FilterRuleHeaderArgsAndMask.RuleHeaderArgs .RxFilterDB4BytesRuleArgs[0][0] = OxBB;

FilterRuleHeaderArgsAndMask.RuleHeaderArgsMask[ O ] = OxDD;
RetvVal = sl_WlanRxFilterUpdateFilterArgs( Filterld ,
&amp;FilterRuleHeaderArgsAndMask , BinaryRepresentation );

3
break;
3
b
//
// RX filters
//
int main( int argc, char *argv[] )
{
sl_Start(NULL, NULL, NULL);
RxFilterseExample( "1 ); //create filter
RxFiltersexample( "3 ); //enable all
RxFiltersExample( "4° ); //Get statistics
RxFilterseExample( "6" ); //change prepared
RxFilterseExample( *7" ); //Update
RxFiltersExample( *5° ); //SaveTo flash
while (1);
3
SWRU368—-June 2014 Rx Filter 121

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS Chapter 16
SWRU368-June 2014
INSTRUMENTS

Transceiver Mode

Topic Page
G R 1= V=T = LI D= T o] o) o PPN 123
16.2 HOW t0 USE /AP Lottt ettt ettt e et e e et e et e e e e e e n e e aa e e e e e e nanenenen 123
16.3 Sending and RECEIVING .cucuiuinieitiiiiieiie ettt et e e et et e e e e a e e e e e nen e enens 124
16.4 Changing SOCKE! PrOPertiES ...cuiuieieiiiiinitieiiieeeaie it eeea e e e eeeneasereaeeenenens 124
16.5 Internal PacKet GENEIatOr ...t ittt ettt ettt a et e e e s e e s e e aeaeaaeens 125
16.6 Transmitting CW (Carrier-WaVe) .......ueueueueuieieieeeenaneeseaeaeenssseseaeaeasnsnrereaeaenenanns 125
16.7 Connection Policies and TranSCeiver MOOE ......cuiiiiiiiiiiiiiiieiee et eneee 125
16.8 Notes about Receiving and TranSmMitting ....v.veveeeeeieieiiiieeee e eaeaeeeneees 125
L16.9  USE CAS S tutiutintiitititeinetteattan e ettt et e an e aa e st e s s aa e aae st s n e an e eae st eanean e e et aaneane e 126
G0 0 T 15 0 ) 0 = P 128

122

Transceiver Mode

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS

www.ti.com General Description

16.1 General Description

The 802.11 transceiver mode is a powerful tool for sending and receiving raw data in either Layer 2 (MAC)
or Layer 1 (Physical).

There are eight network layers:

Table 16-1. Network Layers

Application

Presentation

Session

Transport

Network
LLC — Logical Link Control
MAC — Medium Access Control
Physical

The user could use the entire frame's space starting from the 802.11 header (excluding the duration field)
to receive and transmit data.

In transceiver mode, there are no frame acknowledgments or retries. Therefore there are no guarantees
that the frame will reach its destination. When working in L1 mode, there may be collisions with other
frames or energy.

Figure 16-1 illustrates the 802.11 frame structure. The white sections are user-configurable, and the
grayed part cannot be overwritten.

Frame | Duration| Address | Address | Address |Sequence| Address | Network Data | FCS
Control D 1 2 3 Control 4
2Bytes |2Bytes 6Bytes ©6DBytes 6Bytes 2Bytes 6Bytes O0to2312Bytes 4 Bytes
Protocol To From | More Power | More
Version Type Subtype DS DS Frag Retry Mgmt | Data WEP | Order
2 bits 2 bits 4 bits 1bit 1bit 1 bit 1 bit 1bit 1 bit 1 bit 1 bit

Figure 16-1. 802.11 Frame Structure

16.2 How to Use / API

Using the host driver that controls the CC3100 (which includes the SimpleLink studio), the user needs no
more than five commands to work with the abilities of the 802.11 transceiver. As the CC3100 is a
networking device that complies with BSD socket implementation, use the command sl_Socket with the
following arguments to start the transceiver.

soc = sl_Socket(SL_AF_RF ,SL_SOCK_RAW/SL_SOCK_DGRAM,channel);

Transceiver Mode 123

SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Sending and Receiving www.ti.com

SL_AF_RF - Indicates from what level of network the user can override the frame.
SL_SOCK_RAW - Indicates an L1 raw socket (no respect for 802.11 medium access policy (CCA))
SL_SOCK_DGRAM - Indicates an L2 raw socket (respecting 802.11 medium access policies)

channel — Configures the operational channel to start receiving or transmitting traffic. Use 0 to keep the
default channel.

This command returns a socket ID, a two byte integer that will be used to reference the socket. If there is
a problem with the socket, the command will return an error code.

To close the socket, use the command s|_Close:
sl_Close(soc);

16.3 Sending and Receiving
The user can open and close the transceiver using two commands. To start the traffic flow, use the
sl_Send command to transmit and the sl_Recv command to receive.
sl_Send(soc ,RawData ,len ,flags);
soc — Socket ID
RawData — The char *array holds the data to send, beginning with the first byte of the 802.11 MAC
header.
len — The size of the data in bytes
flags — Usually the user sets this parameter to 0, but the user can change any of the default
channel/rate/tx-power/11b-preamble parameters using this parameter. Use the
SL_RAW_RF_TX_PARAMS macro to specify the mentioned parameters.
Returns — The number of bytes sent
For example, to transmit a frame on channel 1 using the 1IMBPS data rate with Tx power setting of 1 and
short preamble (valid only for 11b), use:
sl_Send(soc,buf, len,SL_RAW_RF_TX_PARAMS(CHANNEL_1, RATE_1M,1, TI_SHORT_PREAMBLE));
sl_Recv(soc,buffer,500,0);
soc — Socket ID
buffer — The char *array used for containing the received packet
500 — The maximum size of the packet received. The max size is 1472: if the packet is longer, the rest will
be discarded.
The last argument should always be 0, which indicates no flags.
Return — The number of bytes sent
16.4 Changing Socket Properties
The command sl_SetSockOpt changes the socket properties (after opening the socket).
Examples:
Change the operating channel:
sl_SetSockOpt(soc, SL_SOL_SOCKET, SO_CHANGE_CHANNEL, &amp;channel,1);
Change the default PHY data rate:
sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SO_PHY_RATE, &amp;rate,l);
Change the default Tx power:
sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SO_PHY_TX_POWER, &amp;power,1l);
Change the number of frames to transmit (see Section 16.5):
sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SO_PHY_NUM_FRAMES_TO_TX, &amp;numFrames,1);
124 Transceiver Mode SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com Internal Packet Generator

16.5

16.6

16.7

16.8

Change the 802.11b preamble:
sl_SetSockOpt(soc, SL_SOL_PHY_OPT, SO_PHY_PREAMBLE,&amp;preamble,,1);

Internal Packet Generator

For testing purposes, there is an internal packet generator in the CC3100 capable of repeating a pre-
defined pattern of data.

To use, before calling sl_Send, set the number of frames using the sl_SetSockOpt to either O (an infinite
number of frames) or to the given number of frames needed to transmit.

Following that, use a single call to sI_Send API to trigger the frames transmission.

The CC3100 will keep transmitting until it has sent all the requested frames, or until the socket is closed or
another socket property changes (in case an infinite number of frames were used).

Transmitting CW (Carrier-Wave)
To transmit a carrier-wave signal, use the sl_Send API with NULL buffer and 0 (zero) length.
Use the flags parameter in the sl_Send API to signal the tone offset (-25 to 25).

Stopping CW transmission is done by triggering another sl_Send with flags = 128 (decimal) as follows:
sl_Send (soc,NULL,0,128);

Connection Policies and Transceiver Mode

To use transceiver mode, disable previous connection policies that might attempt to automatically connect
to an access-point.

Example:
sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,0,0),NULL,0);
sl_WlanDisconnect();

Notes about Receiving and Transmitting

16.8.1 Receiving

The packet being received has a SimpleLink proprietary radio header attached to it. The header has some
information about the packet. This is the structure of the header.

The rate is an index from 0 to 20 in the following order:

RATE1IM =0
RATE2M =1
RATE 5.5M =2
RATE 11IM =3
RATE 6M =4
RATE 9M =6
RATE 12M =7
RATE 18M =8
RATE 24M =9
RATE 36M = 10
RATE 48M =11

RATE 54M = 12
RATE MCS_0 =13

SWRU368-June 2014 Transceiver Mode 125
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Use Cases

13 TEXAS
INSTRUMENTS

www.ti.com

RATEMCS 1=14
RATE MCS_2 =15
RATE MCS_3 =16
RATE MCS_4 =17
RATE MCS_5=18
RATE MCS_6 =19
RATE MCS_7 =20
The channel is 1 to 11.

If using the sl_Recv command resulted in a frame in a buffer, extract the header by casting the start of

the buffer to a pointer variable in type of TransceiverRxOverHead _t

frameRadioHeader = (TransceiverRxOverHead_t *)buffer;

16.9 Use Cases

The following key applications can be developed using this feature.

16.9.1 Sniffer

The transceiver can be used as a sniffer. Open a socket and receive packets in a loop using the sl_Recv
command. The following code describes how to capture frames and present them in wireshark:

void Sniffer(Channel_e channel)

{

INT16 socC;
char buffer[1536];

int counter = @;

int recievedBytes = @;

long count = @;

long long bytesSent = @;

DWORD startTick = @;

int fConnected = 8;

HANDLE hPipe = NULL;

LPTSTR lpszPipename = TEXT{"\\\\.\\pipei\cc31ee");
DWORD byteWritten;

DWORD result;

wireSharkGleobalHeader_t gHeader;

Figure 16-2. Sniffer

126

Transceiver Mode

Copyright © 2014, Texas Instruments Incorporated

SWRU368-June 2014
Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS

www.ti.com

Use Cases

frameRadioHeader_t frame;
TransceiverRxOverHead_t *frameRadioHeader;

j************1*********************** Cr'ea‘ting Named plpe for Nir'eShark *********1***********/

/! open a named pipe between this program and wireshark so packets could be sent to it
hPipe = CreateNamedPipe(lpszPipename,
PIPE_ACCESS_OUTBOUND,
PIPE_TYPE_MESSAGE | PIPE_WAIT,
PIPE_UNLIMITED_ INSTANCES,
65536,
65536,
NMPWAIT_USE_DEFAULT_WAIT,
NULL);

printf("waiting for connection.... \n(you should add a pipe interface in wireshark name
AN\ \pipe\cc3169) \n");

fConnected = ConnectNamedPipe(hPipe,NULL);

printf("connection done...\n");

j************a:k****************s***** Sending the global header. ‘FOI" wir'e shark *1&****#****#*/
// this is global header for wireshark, to configure the type of packets it going to receive
// for more info check online for pcap format

gHeader.magic_number = @xalb2c3d4;

gHeader.version_major = 2;

gHeader.version_minor = 4;

gHeader.thiszone = 8;

gHeader.sigfigs = @;

gHeader.snaplen = @x@00BFFFF;

gHeader.network = 127;

result = WriteFile(hPipe,&gHeader,sizeof(gHeader),&byteWritten,NULL);

JAHFFEELRLEREEFERLLOIHILT R IR LRLLEXEXE Receiving frames from the CC31@8 and sending it to
wireshark®** ¥+ /

// open the Transceiver
soc = sl_Socket(SL_AF_RF,SL_SOCK_RAM, channel);
while(1)
{
// start receiving the packets
recievedBytes = sl_Recv(soc,buffer,1536,8);
// get the receive radio header so we could present its info in wireshark
frameRadioHeader = (TransceiverRxOverHead_t *)buffer;

// wireshark has its own header to present wifi frames, here we prepare the header, so we could send
/f it before the frame
// check online for 86211 radio header for pcap format.
// here you can put the capture time in windows format
frame.ts_sec = 190285;
frame.ts_usec = 111284;
// here we put the length of the packet, the 24 is this header length and we decrease the radio
// header which is 8 bytes
frame.incl_len = 24 + recievedBytes - 8;
frame.orig_len = 24 + recievedBytes - §;
frame.it_version = 8;
frame.it_pad = @;
frame.it_len = 24;
frame.it_present = 2x0208002d;
/I present the timestamp
frame.tsft_low = frameRadioHeader->timestamp;
frame.tsf_high = 8;
// present the rate
frame.rate = RateIndexToRate[frameRadioHeader-»rate];
frame.padl = 6x11;
// present the channel
frame.channel_low = ChannelToFrequency((Channel_e)frameRadioHeader->channel);
frame.channel_high = 9x0088;
// present the rssi
frame.antena = frameRadioHeader->rssi;
frame.padll = ©x44;

// send the wireshark frame header
result = WriteFile(hPipe,&frame,sizeof(frame),&byteWritten,NULL);

// send the frame minus the 8 bytes radio overhead
result = WriteFile(hPipe,&(buffer[8]), (recievedBytes - 8),&byteWritten,NULL);

sl _Close(soc);

Figure 16-3. Sniffer

SWRU368-June 2014 Transceiver Mode
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

127


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

TX Continues

13 TEXAS
INSTRUMENTS

www.ti.com

16.10 TX Continues

This application transmits the same packet in continues. This application tags and measures loss using

the Rx Statistics feature. The following code shows how to use this feature:

void TxContinues(Channel_e channel,RateIndex_e rate,UINT32 numberOfPackets,DWORD intervalMiliSec)

{
INT16 soc;
UINT32 i;
//set the rate in the packets header
RawData_Ping[@] = (char)rate;
//start the transceiver on the selected channel
soc = sl Socket(SL_AF_RF,SL_SOCK_RAW,channel);
J/transmit N packets with the delay chosen
for{(i = @ ; i < numberOfPackets ; i++)
s1_Send(soc,RawData_Ping,sizeof(RawData_Ping),e);
Sleep{intervalMiliSec);
H
// close the transceiver
sl Close(soc);
}
Figure 16-4. Tx Continues
128 Transceiver Mode SWRU368—-June 2014

Copyright © 2014, Texas Instruments Incorporated

Submit Documentation Feedback


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

1 Chapter 17
I TEXAS SWRU368-June 2014
INSTRUMENTS
Rx Statistics
Topic Page
A R 1= V=T = T D =T o] o) o PPN 130
17.2 HOW t0 USE /AP ettt ettt ettt a et e e et e e et e e et e e e e aa e e e e e e e nananenes 130
17.3 Notes about Receiving and TranSmMitting .....cueeie e eeen e eenes 131
L7.4  USE CaS S tutuutiniiutintineine st tattan e aaetat et s aa e aa e et eassaneeae st sansansaae et eaneane neeansanenneanns 131

SWRU368-June 2014
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

Rx Statistics 129


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

General Description

13 TEXAS
INSTRUMENTS

www.ti.com

17.1 General Description

The Rx Statistics feature is used to determine certain important parameters about the medium and the
CC3100 RX mechanism. Rx Statistics provides data about:

e RSSI — Receive power in dbm units.

— RSSI histogram, between -40 and -87 dbm in resolution of 8 dbm.

— Average RSSI divided to DATA + CTRL / MANAGEMENT.
* Received frames — Divided into valid frames, FCS error and PLCP error frames.
* Rate histogram — Creates a histogram of all BGN rates 1mbps-MCS?7.

17.2 How to Use / API
Three commands get the needed statistics. The first command is s|_WlanRxStatStart (), which starts
collecting the data about all Rx frames.
sl_WlanRxStatStop(), stops collecting the data.
sl_WlanRxStatGet(), gets the statistics that have been collected and returns them in a variable type
SlGetRxStatResponse_t. The command is used as follows:
SIGetRxStatResponse_t rxStatResp;
sl_WlanRxStatGet
(&amp;rxStatResp , 0 );
The second parameter is flagged and it is not currently in use.
The SIGetRxStatResponse_t holds the following variables:
typedef struct
{
UINT32 ReceivedValidPacketsNumber;
UINT32 ReceivedFcsErrorPacketsNumber;
UINT32 ReceivedPIcpErrorPacketsNumber;
INT16  AvarageDataCtrlRssi;
INT16  AvarageMgMntRssi;
UINT16 RateHistogram[NUM_OF RATE_INDEXES];
UINT16 RssiHistogram[SI1ZE_OF RSSI_HISTOGRAM];
UINT16 Padding[1];
UINT32 StartTimeStamp;
UINT32 GetTimeStamp;
}_GetRXStatResponse_t;
ReceivedValidPacketsNumber — Holds the number of valid packets received
ReceivedFcsErrorPacketsNumber — Holds the number of FCS error packets dropped
ReceivedPIcpErrorPacketsNumber — Holds the number of PLCP error packets dropped
avarageDataCtrIRssi — Holds the average data + ctrl frames RSSI
avarageMgMntRssi — Holds the average management frames RSSI
RateHistogram[NUM_OF_RATE_INDEXES] — Histogram of all rates of the received valid frames. The
rates are sorted as follows:
RATE_1IM =0 ...
RATE_2M
RATE_5 5M
RATE_11M
RATE_6M
RATE_9M
RATE_12M
RATE_18M
130 Rx Statistics SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

www.ti.com

TEXAS
INSTRUMENTS

Notes about Receiving and Transmitting

17.3

17.4

RATE_24M
RATE_36M

RATE_48M

RATE_54M

RATE_MCS 0

RATE_MCS_1

RATE_MCS 2

RATE_MCS_3

RATE_MCS_4

RATE_MCS 5

RATE_MCS_6

RATE_MCS_7
NUM_OF_RATE_INDEXES is 21.

RssiHistogram[SIZE_OF_RSSI_HISTOGRAM] — Histogram that holds the accumulated RSSI of all
received packets between -40 and -87 dbm every 8 dbm.

SIZE_OF_RSSI_HISTOGRAM is 6

Padding[1]

StartTimeStamp — Holds the start collecting time in microsec
GetTimeStamp — Holds the statistics get time in microsec

Notes about Receiving and Transmitting

Every packet that exceeds the upper or lower boundary of the RSSI histogram in dbm (-40 or -87) is
accumulated in the higher or lower cell respectively.

Every call to sI_WlanRxStatGet resets the statistics database.
When calling only sI_WIlanRxStatGet, without the start command, only the RSSI is available.

Use Cases

The Rx Statistics feature inspects the medium in terms of congestion and distance, validates the RF
hardware, and uses the RSSI information to position the CC3100 in an ideal location.

Example:

Connect the SimpleLink device to an AP, run a UDP flow of packets to the device from the AP and use
the following code with the SimpleLink Studio to get Rx statistics.

SWRU368-June 2014 Rx Statistics
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

131


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Use Cases www.ti.com

void RxStatisticsCollect()

{
INT16 soc;
char buffer[1588];
_GetRX5tatResponse_t rxStatResp;
int i;

soc = sl Socket(SL_AF_RF,SL_SOCK_RAW,7);

sl _Recv(soc,buffer,1470,08);

system("cls");

printf("Press any key to start collecting statistics...\n\n");

_geteh();

sl _StartRXstat();

printf("Press any key to get the statistics...");

_getch();

system("cls");

rxStatResp = s1_GetRXStat();

printf("Rx Statistics: “n");

printf("Received Packets - ¥d",rxStatResp.ReceivedvValidPacketsNumber);
printf(" Received FCS - ¥d",rxStatResp.ReceivedFcsErrorPacketsNumber);
printf(" Received PLCP - ¥d\n",rxStatResp.ReceivedPlcpErrerPacketsNumber);
printf("Average Rssi for management: ¥d\tAverage Rssi for other packets: ¥d\n",rxStatResp.AvarageMgMntRssi,rxStatResp.AvarageDataCtrlRssi);
for(i = B ; i < SIZE_OF_RSSI_HISTOGRAM ; i++)

printf("Rssi Histogram cell ¥d is ¥d\n",i,rxStatResp.RssiHistogram[i]);
printf("\n"};
for(i = @ ; i < NUM_OF RATE_INDEXES ; i++)

printf(“Rate Histogram cell %d is &d\n",i,rxStatResp.RateHistogram[i]};

}

printf("The data sampled in %d micr
printf("\npress any key to exit”
_getch();

sl StopRXStat();

sl Close(soc);

Figure 17-1. Use Cases

132 Rx Statistics SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Chapter 18
l TEXAS SWRU368-June 2014

INSTRUMENTS

APl Overview
Topic Page

8 700 I T Y < 134

S 7 1V I 136

S TR 0 Y o1 <= 139

R B S N = 72N o o PP 141

S TS T N[ o P 142

R T T =S V£ (=] 0P 143
SWRU368-June 2014 API Overview 133

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Device

13 TEXAS
INSTRUMENTS

www.ti.com

This chapter discusses the different SimpleLink APIs. The chapter does not cover the number of
parameters, parameter types, or return values. For that information, refer to the API doxygen guide.

The APIs are separated into six main groups:

» Device

» NetConfig
« WLAN

» Socket

*  NetApp

e File System

User
Application

0S Facilties SimpleLink Driver (SLD)

18.1

0s NetConfig NetApp
Adaptation

libSPT libUART

Figure 18-1. Host Driver API Silos

Device
The device APIs handle the device power and general configuration.

Sl_Start — This function initializes the communication interface, sets the enable pin of the device, and
calls to the init complete callback. If no callback function is provided, the function is blocking until the
device finishes the initialization process. The device returns to its functional role in case of success:
ROLE_STA, ROLE_AP, ROLE_P2P. Otherwise, in case of a failure it returns: ROLE_STA ERR,
ROLE_AP_ERR, ROLE_P2P_ERR

SI_Stop — This function clears the enable pin of the device, closes the communication interface, and
invokes the stop complete callback (if it exists). The timeout parameter enables the user to control the
hibernate timing:

e 0 - Enter to hibernate immediately
» OxFFFF — The host waits for the device to respond before hibernating, without timeout protection.

* 0 < Timeout[msec] < OxFFFF — The host waits for the device to respond before hibernating, with a
defined timeout protection. This timeout defines the maximum time to wait. The NWP response can be
sent earlier than this timeout.

sl_DevSet — This function configures different device parameters. The main parameters used are the
DeviceSetID and Option. The possible DeviceSetID and Option combinations are:
« SL DEVICE_GENERAL_CONFIGURATION — The general configuration options are:

— SL_DEVICE_GENERAL_CONFIGURATION_DATE_TIME — Configures the device internal date
and time. Note that the time parameter is retained in hibernate mode but will reset in shutdown.

134

API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Device

Setting device time and date example:
SIDateTime_t dateTime= {0};

dateTime.sl_tm_day = (unsigned long)23; // Day of month (DD format) range 1-13
dateTime.sl_tm_mon = (unsigned long)6; // Month (MM format) in the range of 1-12
dateTime.sl_tm_year = (unsigned long)2014; // Year (YYYY format)

dateTime.sl_tm_hour = (unsigned long)17; // Hours in the range of 0-23
dateTime.sl_tm_min = (unsigned long)55; // Minutes in the range of 0-59
dateTime.sl_tm_sec = (unsigned long)22; // Seconds in the range of 0-59

sl_DevSet(SL_DEVICE_GENERAL_CONFIGURATION, SL_DEVICE_GENERAL_CONFIGURATION_DATE_TIME,sizeof(SIDateT
ime_t), (unsigned char *
) (&amp;dateTime));

sl_DevGet — This function enables the user to read different device parameters. The main parameters
used are the DeviceSetID and Option parameter. The possible DeviceSetID and Option combinations are:
* SL_DEVICE_GENERAL_VERSION — Returns the device firmware versions
 SL_DEVICE_STATUS - The device status options are:

— SL_EVENT_CLASS DEVICE - Possible values are:

e EVENT_DROPPED_DEVICE_ASYNC_GENERAL_ERROR — General system error, please
check your system configuration.

» STATUS DEVICE_SMART_CONFIG_ACTIVE — Device in SmartConfig mode.
— SL_EVENT_CLASS_WLAN - Possible values are:

« EVENT_DROPPED_WLAN_WLANASYNCONNECTEDRESPONSE
EVENT_DROPPED_WLAN_WLANASYNCDISCONNECTEDRESPONSE
EVENT_DROPPED_WLAN_STA_CONNECTED

» EVENT_DROPPED_WLAN_STA_DISCONNECTED
e STATUS WLAN_STA CONNECTED
e SL_EVENT_CLASS BSD - Possible values are:

— EVENT_DROPPED_SOCKET_TXFAILEDASYNCRESPONSE
e SL_EVENT_CLASS_NETAPP - Possible values are:

— EVENT_DROPPED_NETAPP_IPACQUIRED

— EVENT_DROPPED_NETAPP_IP_LEASED

— EVENT_DROPPED_NETAPP_IP_RELEASED
« SL _EVENT_CLASS_NETCFG
» SL _EVENT_CLASS_NVMEM

Example for getting version:

SIlVersionFull ver;

pConfigOpt = SL_DEVICE_GENERAL_VERSION;

sl_DevGet(SL_DEVICE_GENERAL_CONFIGURATION, &amp;pConfigOpt,&amp;pConfigLen, (unsigned char
*)(&amp;ver));

printf("CHIP %d\nMAC 31.%d.%d.%d .%d\nPHY %d .%d .%d .%d\nNWP %d .%d .%d .%d\nROM %d\nHOST

%d -%d .%d -%d\n"*,ver .ChipFwAndPhyVersion.Chipld,

ver .ChipFwAndPhyVersion.FwVersion[0],ver.ChipFwAndPhyVersion.FwVersion[1],

ver .ChipFwAndPhyVersion.FwVersion[2],ver.ChipFwAndPhyVersion.FwVersion[3],

ver .ChipFwAndPhyVersion.PhyVersion[0],ver.ChipFwAndPhyVersion.PhyVersion[1],

ver .ChipFwAndPhyVersion.PhyVersion[2],ver.ChipFwAndPhyVersion.PhyVersion[3],

ver _NwpVersion[0],ver _NwpVersion[1],ver.NwpVersion[2],ver_.NwpVersion[3],

ver.RomVersion, SL_MAJOR_VERSION_NUM, SL_MINOR_VERSION_NUM, SL_VERSION_NUM, SL_SUB_VERSION_NUM);

sl_EventMaskSet — Masks asynchronous events from the device. Masked events do not generate
asynchronous messages from the device. This function receives an EventClass and a bit mask. The
events and mask options are:

» SL_EVENT_CLASS_WLAN user events:
— SL_WLAN_CONNECT_EVENT
— SL_WLAN_DISCONNECT_EVENT

SWRU368-June 2014 API Overview 135

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

WLAN

13 TEXAS
INSTRUMENTS

www.ti.com

18.2

— SL_WLAN_STA_CONNECTED_EVENT
— SL_WLAN_STA_DISCONNECTED_EVENT
* SmartConfig events:
— SL_WLAN_SMART_CONFIG_START_EVENT
— SL_WLAN_SMART_CONFIG_STOP_EVENT
e SL_EVENT_CLASS_DEVICE user events:
— SL_DEVICE_FATAL_ERROR_EVENT
» SL_EVENT_CLASS_BSD user events:
— SL_SOCKET_TX_FAILED_EVENT
— SL_SOCKET_SSL_ACCEPT_EVENT
* SL_EVENT_CLASS_NETAPP user events:
— SL_NETAPP_IPACQUIRED_EVENT
— SL_NETAPP_IPACQUIRED_V6_EVENT

An example of masking out connection and disconnection from WLAN class:
sl_EventMaskSet(SL_EVENT_CLASS_WLAN, (SL_WLAN_CONNECT_EVENT | SL_WLAN_DISCONNECT_EVENT) );

sl_EventMaskGet — Returns the events bit mask from the device. If that event is masked, the device does
not send this event. The function is similar to s|_EventMaskSet.

An example of getting an event mask for WLAN class:

unsigned long maskWlan;
sl_StatusGet(SL_EVENT_CLASS_WLAN, &amp;maskWlan);

sl_Task — This function must be called from the main loop or from dedicated thread in the following cases:
e Non-Os Platform — Should be called from the main loop

e Multi Threaded Platform — When the user does not implement the external spawn functions, the
function should be called from a dedicated thread allocated to the SimpleLink driver. In this mode the
function never returns.

sl_UartSetMode — This function should be used if the user’s chosen host interface is UART. The function
is responsible for setting the user's UART configuration:

» Baud rate

* Flow control

e COM port

WLAN

sl_WlanSetMode — The WLAN device has several WLAN modes of operation. By default the device acts
as a WLAN station, but it can also act in other WLAN roles. The different options are:

» ROLE_STA — For WLAN station mode

* ROLE_AP — For WLAN AP mode

* ROLE_P2P — For WLAN P2P mode

Note: The set mode functionality only takes effect in the next device boot.

An example of switching from any role to WLAN Access point roles:

sl_WlanSetMode (ROLE_AP);

/* Turning the device off and on in order for the roles change to take effect */
sl_Stop(0);
sl_Start(NULL,NULL,NULL);

sl_WIlanSet — Enables the user to configure different WLAN related parameters. The main parameters
used are ConfigID and ConfigOpt. The possible ConfigID and ConfigOpt combinations are:

e SL WLAN_CFG_GENERAL_PARAM_ID — The different general WLAN parameters are:

136

API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com WLAN

— WLAN_GENERAL_PARAM_OPT_COUNTRY_CODE

— WLAN_GENERAL_PARAM_OPT_STA TX POWER - Sets STA mode Tx power level, a number
from 0O to 15, as the dB offset from max power (O will set maximum power).

— WLAN_GENERAL_PARAM_OPT_AP_TX_POWER - Sets AP mode Tx power level, a number
from 0 to 15, as the dB offset from max power (0 will set maximum power).

e SL WLAN_CFG_AP_ID — The different AP configuration options are:
— WLAN_AP_OPT_SSID
— WLAN_AP_OPT_COUNTRY_CODE
— WLAN_AP_OPT_BEACON_INT — Sets the beacon interval
— WLAN_AP_OPT_CHANNEL
— WLAN_AP_OPT_HIDDEN_SSID — Sets the AP to be hidden or not hidden
— WLAN_AP_OPT_DTIM_PERIOD
— WLAN_AP_OPT_SECURITY_TYPE - Possible options are:
» Open security: SL_SEC_TYPE_OPEN
 WEP security: SL_SEC_TYPE_WEP
* WPA security: SL_SEC_TYPE_WPA
— WLAN_AP_OPT_PASSWORD - Sets the security password for AP mode:
» For WPA: 8 to 63 characters
» For WEP: 5 to 13 characters (ASCII)
— WLAN_AP_OPT_WPS_STATE
» SL WLAN_CFG_P2P_PARAM_ID
— WLAN_P2P_OPT_DEV_NAME
— WLAN_P2P_OPT_DEV_TYPE

— WLAN_P2P_OPT_CHANNEL_N_REGS - The listen channel and regulatory class determine the
device listen channel during the P2P find and listen phase. The operational channel and regulatory
class determines the operating channel preferred by the device (if the device is the group owner,
this is the operating channel). Channels should be one of the social channels (1/6/11). If no listen or
operational channel is selected, a random 1/6/11 will be selected.

— WLAN_GENERAL_PARAM_OPT_INFO_ELEMENT — The application sets up to
MAX_PRIVATE_INFO_ELEMENTS_SUPPORTED info elements per role (AP / P2P GO). To delete
an info element, use the relevant index and length = 0. The application sets up to
MAX_PRIVATE_INFO_ELEMENTS_SUPPORTED to the same role. However, for AP no more than
INFO_ELEMENT_MAX_TOTAL_LENGTH_AP bytes are stored for all info elements. For P2P GO
no more than INFO_ELEMENT_MAX_TOTAL_LENGTH_P2P_GO bytes are stored for all info
elements.

— WLAN_GENERAL_PARAM_OPT_SCAN_PARAMS — Changes the scan channels and RSSI
threshold

An example of setting SSID for AP mode:
unsigned char str[33];

memset(str, 0, 33);
memcpy(str, ssid, len); // ssid string of 32 characters
sl_WlanSet(SL_WLAN_CFG_AP_ID, WLAN_AP_OPT_SSID, strlen(ssid), str);

sl_WlanGet — Enables the user to configure different WLAN-related parameters. The main parameters
used are ConfiglD and ConfigOpt. The usage of sl_WIlanGet is similar to sI_WlanSet.

sl_WlanConnect — Manually connects to a WLAN network
sl_WlanDisconnect — Disconnects WLAN connection

SWRU368-June 2014 API Overview 137

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

WLAN www.ti.com

sl_WilanProfileAdd — When auto start connection policy is enabled, the device connects to an AP from
the profiles table. Up to seven profiles are supported. If several profiles are configured, the device selects
the highest priority profile. Within each priority group, the device choses the profile based on the following
parameters in descending priority: security policy, signal strength.

sl_WlanProfileGet — Reads a WLAN profile from the device
sl_WIlanProfileDel — Deletes an existing profile

sl_WlanPolicySet — Manages the configuration of the following WLAN functionalities:

e SL_POLICY_CONNECTION — SL_POLICY_CONNECTION type defines three options available to
connect the CC31xx device to the AP:

— Auto Connect — The CC31xx device tries to automatically reconnect to one of its stored profiles
each time the connection fails or the device is rebooted. To set this option, use:

sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(1,0,0,0,0),NULL,0)

— Fast Connect — The CC31xx device tries to establish a fast connection to AP. To set this option,
use:

sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,1,0,0,0),NULL,0)

— P2P Connect - If Any P2P mode is set, CC31xx device tries to automatically connect to the first
P2P device available, supporting push button only. To set this option, use:

sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,1,0),NULL,0)

— Auto smart config upon restart — The device wakes up in SmartConfig mode. Note: Any
command from the host ends this state. To set this option use:

sl_WlanPolicySet(SL_POLICY_CONNECTION,SL_CONNECTION_POLICY(0,0,0,0,1),NULL,0)

 SL_POLICY_SCAN - Defines the system scan time interval if there is no connection. The default
interval is 10 minutes. After the settings scan interval, an immediate scan is activated. The next scan is
based on the interval settings. For setting the scan interval to one minute interval use the following
example:

unsigned long intervallnSeconds = 60;

#define SL_SCAN_ENABLE 1
sl_WlanPolicySet(SL_POLICY_SCAN,SL_SCAN_ENABLE, (unsigned char *)
&amp; interval InSeconds, sizeof(interval InSeconds));

To disable the scan, use:

#define SL_SCAN_DISABLE O

sl_WlanPolicySet(SL_POLICY_SCAN,SL_SCAN_DISABLE,0,0);

 SL_POLICY_PM - Defines a power management policy for station mode only. There are four power
policies available:

— SL_NORMAL_POLICY (default) — For setting normal power management policy use:
sl_WlanPolicySet(SL_POLICY_PM , SL_NORMAL_POLICY, NULL,O)

— SL_LOW_LATENCY_POLICY - For setting low latency power management policy use:
sl_WlanPolicySet(SL_POLICY_PM , SL_LOW_LATENCY_POLICY, NULL,O)

— SL_LOW_POWER_POLICY - For setting low power management policy use:
sl_WlanPolicySet(SL_POLICY_PM , SL_LOW_POWER_POLICY, NULL,O)

— SL_ALWAYS_ON_POLICY - For setting always on power management policy use:
sl_WlanPolicySet(SL_POLICY_PM , SL_ALWAYS_ON_POLICY, NULL,O)

— SL_LONG_SLEEP_INTERVAL_POLICY - For setting long sleep interval policy use:

unsigned short PolicyBuff[4] = {0,0,800,0}; // 800 is max sleep time in mSec
sl_WlanPolicySet(SL_POLICY_PM , SL_LONG_SLEEP_INTERVAL_POLICY,
PolicyBuff,sizeof(PolicyBuff));

« SL_POLICY_P2P — Defines P2P negotiation policy parameters for a P2P role. To set the intent

138 API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Socket

negotiation value, set one of the following:

— SL_P2P_ROLE_NEGOTIATE —intent 3

— SL_P2P_ROLE_GROUP_OWNER - intent 15
— SL_P2P_ROLE_CLIENT —intent O

To set the negotiation initiator value (the initiator policy of the first negotiation action frame), set one of
the following:

— SL_P2P_NEG_INITIATOR_ACTIVE

— SL_P2P_NEG_INITIATOR_PASSIVE

— SL_P2P_NEG_INITIATOR_RAND_BACKOFF
For example:

set sl_WlanPolicySet(SL_POLICY_P2P,
SL_P2P_POLICY(SL_P2P_ROLE_NEGOTIATE,SL_P2P_NEG_INITIATOR_RAND_BACKOFF) ,NULL,0);

sl_WIlanPolicyGet — Reads the different WLAN policy settings. The possible options are:
+ SL_POLICY_CONNECTION

« SL_POLICY_SCAN

+ SL _POLICY_PM

sl_WlanGetNetworkList — Gets the latest WLAN scan results

sl_WlanSmartConfigStart — Puts the device into SmartConfig state. Once SmartConfig has ended
successfully, an asynchronous event will be received:
SL_OPCODE_WLAN_SMART_CONFIG_START_ASYNC_RESPONSE. The event holds the SSID and
an extra field that might also have been delivered (for example, device name).

sl_WlanSmartConfigStop — Stops the SmartConfig procedure. Once SmartConfig is stopped, an
asynchronous event is received: SL_ OPCODE_WLAN_SMART_CONFIG_STOP_ASYNC_RESPONSE

sl_WlanRxStatStart — Starts collecting WLAN Rx statistics (unlimited time)
sl_WlanRxStatStop — Stops collecting WLAN RXx statistics

sl_WlanRxStatGet — Gets WLAN Rx statistics. Upon calling this command, the statistics counters are
cleared. The statistics returned are:

» Received valid packets — Sum of the packets received correctly (including filtered packets)
» Received FCS Error packets — Sum of the packets dropped due to FCS error

» Received PLCP error packets — Sum of the packets dropped due to PLCP error

» Average data RSSI — Average RSSI for all valid data packets received

* Average management RSSI — Average RSSI for all valid management packets received

» Rate histogram — Rate histogram for all valid packets received

e RSSI histogram — RSSI histogram from -40 until -87 (all values below and above RSSI appear in the
first and last cells)

» Start time stamp — The timestamp of starting to collect the statistics in uSec
» Get time stamp — The timestamp of reading the statistics in uSec

18.3 Socket

sl_Socket — Creates a new socket of a socket type identified by an integer number, and allocates system
resources to the socket. The supported socket types are:

e SOCK_STREAM (TCP - Reliable stream-oriented service or Stream Sockets)

e SOCK_DGRAM (UDP — Datagram service or Datagram Sockets)

* SOCK_RAW (Raw protocols atop the network layer)

sl_Close — Gracefully closes socket. This function causes the system to release resources allocated to a
socket. In case of TCP, the connection is terminated.

SWRU368-June 2014 API Overview 139

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Socket

13 TEXAS
INSTRUMENTS

www.ti.com

sl_Accept — This function is used with connection-based socket types (SOCK_STREAM) to extract the
first connection request on the queue of pending connections, creates a new connected socket, and
returns a new file descriptor referring to that socket. The newly created socket is not in the listening state.
The original socket sd is unaffected by this call.

sl_Bind — Gives the socket the local address addr. addr is addrlen bytes long. Traditionally, this function
is called when a socket is created, exists in a name space (address family) but has no hame assigned. A
local address must be assigned before a SOCK_STREAM socket receives connections.

sl_Listen — Specifies the willingness to accept incoming connections and a queue limit for incoming
connections. The listen() call applies only to sockets of type SOCK_STREAM, and the backlog parameter
defines the maximum length for the queue of pending connections.

sl_Connect — Connects the socket referred to by the socket descriptor sd to the address specified by
addr. The addrlen argument specifies the size of addr. The format of the address in addr is determined by
the address space of the socket. If the socket is of type SOCK_DGRAM, this call specifies the peer with
which the socket is associated. Datagrams should be sent to this address, the only address from which
datagrams should be received. If the socket is of type SOCK_STREAM, this call tries to make a
connection to another socket. The other socket is specified by an address in the communications space of
the socket.

sl_Select — Allows a program to monitor multiple file descriptors, waiting until one or more of the file
descriptors become ready for a class of I/O operation. sl_Select has several sub functions to set the file
descriptor options:

» SL_FD_SET - Selects SIFdSet_t SET function. Sets the current socket descriptor on the SIFdSet_t
container

» SL_FD_CLR - Selects SIFdSet_t CLR function. Clears the current socket descriptor on the SIFdSet_t
container

e SL_FD_ISSET - Selects SIFdSet_t ISSET function. Checks if the current socket descriptor is set
(TRUE/FALSE)

e SL_FD_ZERO - Selects SIFdSet_t ZERO function. Clears all socket descriptors from SIFdSet_t
sl_SetSockOpt — Manipulates the options associated with a socket. Options exist at multiple protocol
levels and are always present at the uppermost socket level. The supported socket options are:

e SL_SO_KEEPALIVE — Keeps TCP connections active by enabling the periodic transmission of
messages; Enable/Disable, periodic keep alive. Default: Enabled, keep alive timeout 300 seconds.

* SL_SO_RCVTIMEO - Sets the timeout value that specifies the maximum amount of time an input
function waits until it completes. Default: No timeout

e SL_SO_RCVBUF - Sets TCP max receive window

e SL_SO_NONBLOCKING - Sets the socket to nonblocking operation. Impact on: connect, accept,
send, sendto, recv and recvfrom. Default: Blocking.

* SL_SO_SECMETHOD - Sets the method to the TCP-secured socket (SL_SEC_SOCKET). Default:
SL_SO_SEC_METHOD_SSLv3 TLSV1 2.

» SL_SO_SECURE_MASK - Sets a specific cipher to the TCP-secured socket (SL_SEC_SOCKET).
Default: "Best" cipher suitable to method

e SL_SO_SECURE_FILES — Maps programmed files to the secured socket (SL_SEC_SOCKET)
e SL_SO_CHANGE_CHANNEL - Sets the channel in transceiver mode
* SL_IP_MULTICAST_TTL — Sets the time-to-live value of the outgoing multicast packets for the socket

* SL_IP_RAW_RX_NO_HEADER - Raw socket; removes the IP header from received data. Default:
data includes IP header.

 SL_IP_HDRINCL — RAW socket only; the IPv4 layer generates an IP header when sending a packet
unless the IP_HDRINCL socket option is enabled on the socket. When it is enabled, the packet must
contain an IP header. Default: disabled, IPv4 header generated by Network Stack.

* SL_IP_ADD_MEMBERSHIP — UDP socket; joins a multicast group.
* SL_IP_DROP_MEMBERSHIP — UDP socket; leaves a multicast group.
e SL_SO PHY_RATE — RAW socket; sets WLAN PHY transmit rate.

140

API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

TEXAS
INSTRUMENTS

www.ti.com NetApp

18.4

e SL_SO _PHY_TX POWER — RAW socket; sets WLAN PHY Tx power.

e SL_SO PHY_NUM_FRAMES TO_TX — RAW socket; sets the number of frames to transmit in
transceiver mode.

e SL_SO_PHY_PREAMBLE — RAW socket; sets WLAN PHY preamble.
sl_GetSockOpt — Manipulates the options associated with a socket. Options may exist at multiple

protocol levels and are always present at the uppermost socket level. The socket options are the same as
in sl_SetSockOpt.

sl_Recv — Reads data from the TCP socket
s|_RecvFrom — Reads data from the UDP socket

sl_Send — Writes data to the TCP socket. Returns immediately after sending data to device. In case of
TCP failure, an async event SL_ NETAPP_SOCKET_TX_FAILED will be received. In case of a RAW
socket (transceiver mode), an extra four bytes should be reserved at the end of the frame data buffer for
WLAN FCS.

sl_SendTo — Writes data to the UDP socket. This function transmits a message to another socket
(connectionless socket SOCK_DGRAM, SOCK_RAW). Returns immediately after sending data to the
device. In case of transmission failure, an async event SL_NETAPP_SOCKET_TX_FAILED is received.

sl_Htonl — Reorders the bytes of a 32-bit unsigned value from processor order to network order.
sl_Htons — Reorders the bytes of a 16-bit unsigned value from processor order to network order.

NetApp

sl_NetAppStart — Enables or starts different networking services. Could be one or a combination of the
following:

* SL _NET_APP_HTTP_SERVER_ID — HTTP server service

* SL_NET_APP_DHCP_SERVER_ID — DHCP server service (DHCP client is always supported)

e SL_NET_APP_MDNS_ID — MDNS Client\Server service

sl_NetAppStop — Disables or stops a networking service. Similar options as in s|_NetAppStart.
sl_NetAppSet

sl_NetAppGet

sl_NetAppDnsGetHostByName — Obtains the IP address of a machine on the network, by machine
name. Example:

unsigned long DestinationlP;

sl_NetAppDnsGetHostByName("'www.ti.com”, strlien("www.ti.com'), &amp;DestinationlP,SL_AF_INET);

Addr.sin_family = SL_AF_INET;

Addr.sin_port = sl_Htons(80);
Addr.sin_addr.s_addr = sl_Htonl(DestinationlP);
AddrSize = sizeof(SI1SockAddrin_t);

SocklID = sl_Socket(SL_AF_INET,SL_SOCK_STREAM, 0);

sl_NetAppDnsGetHostByService — Returns service attributes such as IP address, port, and text
according to the service name. The user sets a service name full/part (see the following example), and
should get:

* The IP of service
e The port of service
* The text of service

This is similar to the get host by name method, and is done with a single shot query with PTR type on the
service name. An example for full service name:

* PC1._ipp._tcp.local
* PC2_server._ftp._tcp.local
An example for partial service name:

SWRU368-June 2014 API Overview 141
Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

NetCfg

13 TEXAS
INSTRUMENTS

www.ti.com

e _ipp._tcp.local

» _ftp._tcp.local

sl_NetAppGetServiceList — Gets the list of peer services. The list is in a form of service structure. The
user chooses the type of the service structure. The supported structures are:

» Full service parameters with text

* Full service parameters

» Short service parameters (port and IP only), especially for tiny hosts

Note: The different types of structures exist to save memory in the host.

sl_NetAppMDNSRegisterService — Registers a new mDNS service to the mDNS package and the DB.
This registered service is offered by the application. The service name should be a full service name
according to DNS-SD RFC, meaning the value in the name field in the SRV answer.

Example for service name:

e PC1. ipp._tcp.local

e PC2_server._ftp. tcp.local

If the option is_unique is set, MDNS probes the service name to ensure it is unique before announcing the
service on the network.

sl_NetAppMDNSUnRegisterService — Deletes the mDNS service from the mDNS package and the
database.

sl_NetAppPingStart — Sends an ICMP ECHO_REQUEST (or ping) to the network hosts. An example of
sending 20 ping requests and reporting the results to a callback routine when all requests are sent:

// callback routine

void pingRes(SIPingReport_t* pReport)

// handle ping results
3

// ping activation
void PingTest()

{

SIPingReport_t report;

SIPingStartCommand_t pingCommand;

pingCommand.lp = SL_IPV4_VAL(10,1,1,200); // destination IP address is
10.1.1.200

pingCommand.PingSize = 150; // size of ping, in bytes

pingCommand.PingIntervalTime = 100; // delay between pings, in
milliseconds

pingCommand.PingRequestTimeout = 1000; // timeout for every ping in
milliseconds

pingCommand . TotalNumberOfAttempts = 20; // max number of ping requests. 0 -
forever

pingCommand.Flags = O; // report only when finished

sl_NetAppPingStart( &amp;pingCommand, SL_AF_INET, &amp;report, pingRes ) ;

b

18.5 NetCfg

sl_NetCfgSet — Manages the configuration of the following networking functionalities:

e SL_MAC_ADDRESS_SET - The new MAC address overrides the default MAC address and is saved
in the SFlash file system.

e SL_IPV4_STA P2P_CL_DHCP_ENABLE - Sets the device to acquire an IP address by DHCP when
in WLAN sta mode or P2P client. This is the default mode of the system for acquiring an IP address
after a WLAN connection.

e SL_IPV4_STA_P2P_CL_STATIC_ENABLE — Sets a static IP address to the device working in STA

142 API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

www.ti.com

TEXAS
INSTRUMENTS

File System

18.6

mode or P2P client. The IP address is stored in the SFlash file system. To disable the static IP and get

the address assigned from DHCP, use SL_STA_P2P _CL_IPV4 DHCP_SET.

« SL_IPV4_AP_P2P_GO_STATIC_ENABLE - Sets a static IP address to the device working in AP
mode or P2P go. The IP address is stored in the SFlash file system.
Example:

_NetCfglpV4Args_t ipV4;

ipv4.ipv4 = (unsigned long)SL_IPV4 VAL(10,1,1,201);

address

ipV4._ipV4Mask = (unsigned long)SL_IPV4_VAL(255,255,255,0);

Subnet mask for this AP/P2P

ipV4_ipV4Gateway = (unsigned long)SL_IPV4_VAL(10,1,1,1);

Default gateway address

ipV4._ipv4aDnsServer = (unsigned long)SL_IPV4_VAL(8,16,32,64);

server address
sl_NetCfgSet(SL_IPV4_AP_P2P_GO_STATIC_ENABLE,1,sizeof(_NetCFfglpV4Args_t), (unsigned

char *)

&amp;ipV4);

sl_Stop(0);

sl_Start(NULL,NULL,NULL);

Note: AP mode must use static IP settings.
Note: All set functions require system restart in order for changes to take effect.

// unsigned long IP
// unsigned long
// unsigned long

// unsigned long DNS

sl_NetCfgGet — Reads the network configurations. The options are:
e SL_MAC_ADDRESS_GET

e SL_IPV4_STA P2P_CL_GET_INFO - Gets an IP address from the WLAN station or P2P client. A
DHCP flag is returned to indicate if the IP address is static or from DHCP.

e 0SL _IPV4 AP _P2P GO_GET_INFO — Returns the IP address of the AP.

An example of getting an IP address from a WLAN station or P2P client:

unsigned char len = sizeof(_NetCfglpV4Args_t);
unsigned char dhcplsOn = 0;
_NetCfglpV4Args_t ipv4 = {0};

sl_NetCfgGet(SL_IPV4_STA P2P_CL_GET_INFO,&amp;dhcplsOn,&amp;len, (unsigned char *)&amp;ipV4);

printf("'DHCP is %s 1P %d.%d.%d.-%d MASK %d.%d.-%d.%d GW %d.%d.%d.%d DNS %d.%d.%d.%d\n"",
(dhcplsOn

> 0) ? "ON":"OFF",
SL_IPV4_BYTE(ipV4.ipV4,3),
SL_IPV4_BYTE(ipV4.ipV4,2),
SL_IPV4 _BYTE(ipV4.ipVv4,1),
SL_IPV4_BYTE(ipV4.ipV4,0),
SL_IPV4_BYTE(ipV4.ipVaMask,3),
SL_IPV4_BYTE(ipV4.ipV4Mask,2),
SL_IPV4_BYTE(ipV4.ipVaMask,1),
SL_IPV4_BYTE(ipV4. ipV4Mask,0),
SL_IPV4_BYTE(ipV4.ipV4Gateway,3),
SL_IPV4_BYTE(ipV4.ipV4Gateway,2),
SL_IPV4_BYTE(ipV4.ipV4Gateway,1),
SL_IPV4_BYTE(ipV4.ipV4Gateway,0),

SL_IPV4_BYTE(ipV4.
SL_IPV4_BYTE(ipV4.
SL_IPV4_BYTE(ipV4.
SL_IPV4_BYTE(ipV4.

ipv4DnsServer,3),
ipv4DnsServer,2),
ipv4DnsServer,1),
ipv4DnsServer,0));

File System

sl_FsOpen — Opens a file for read or write from or to Sflash storage AccessModeAndMaxSize. Possible
inputs are:

* FS_MODE_OPEN_READ - Reads a file
» FS_MODE_OPEN_WRITE — Opens an existing file for write

SWRU368—-June 2014

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated

API Overview 143


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

File System www.ti.com

« FS_MODE_OPEN_CREATE(maxSizelnBytes,accessModeFlags) — Opens for creating a new file. The
maximum file size is defined in bytes. For optimal file system size, use max size in 4K-512 bytes (for
example, 3584,7680). Several access modes can be combined together from SIFileOpenFlags_e.

Example:

sl_FsOpen(*'FileName.html™ ,FS_MODE_OPEN CREATE(3584, FS FILE_OPEN_FLAG_COMMIT]_FS_FILE PUBLIC WRITE
) ,NULL, &amp;FileHandle);

sl_FsClose — Closes file in Sflash storage

sl_FsRead — Reads a block of data from a file

sl_FsWrite — Writes a block of data to a file

sl_FsDel — Deletes a specific file from Sflash storage or all files (format)
sl_FsGetiInfo — Returns the file information: flags, file size, allocated size, and tokens

144 API Overview SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

i TEXAS Chapter 19

SWRU368-June 2014
INSTRUMENTS

Asynchronous Events
Topic Page

TR O 1V A PP 146

S 0 = 1= o o P 147

S T T Yo = S 148

T B T Yo = S 148
SWRU368-June 2014 Asynchronous Events 145

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS

INSTRUMENTS
WLAN www.ti.com
The SimpleLink host driver interacts with the SimpleLink device through commands transmitted to the
device over the SPI or UART bus interface. Because some of the commands might trigger long processes
which can take several hundred milliseconds or even seconds, the device and the host driver support a
mechanism of asynchronous events sent from the device to the host driver.
Events notify on process completion such as a SmartConfig process done, notify on device status
changes such as a WLAN disconnection event, or notify on errors such as a fatal error event.
These events can be classified in the following logical sections:
*  WLAN events
* Network application events
* Socket events
» General device events
19.1 WLAN
SL_WLAN_CONNECT_EVENT - Notifies that the device is connected to the AP. Event parameters:
e connection_type
e ssid_len
» ssid_name
» go_peer_device_name_len — Relevant for P2P
* go_peer_device_name
* bssid
SL_WLAN_DISCONNECT_EVENT — Notifies that the device is disconnected from the AP. Event
parameters:
e connection_type
e ssid_len
e ssid_name
» go_peer_device_name_len — Relevant for P2P
* go_peer_device_name
* bssid
* reason_code — WLAN disconnection reason
SL_WLAN_SMART_CONFIG_START_EVENT — Notifies the host that SmartConfig has ended. Event
parameters:
e Status
e ssid_len
» ssid
e private_token_len
» private_token
SL_WLAN_SMART_CONFIG_STOP_EVENT - Notifies the host that SmartConfig has stopped. Event
parameters:
» status
SL_WLAN_STA_CONNECTED_EVENT — Notifies that STA is connected; relevant in AP mode or P2P
GO. Event parameters:
» status
» go_peer_device_name
e mac
* go_peer_device_name_len
* wps_dev_password_id
146 Asynchronous Events SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I

www.ti.com

TEXAS
INSTRUMENTS

Netapp

19.2

e own_ssid
e own_ssid_len

SL_WLAN_STA_ DISCONNECTED_EVENT - Notifies that STA is disconnected; relevant in AP mode or
P2P GO. Event parameters:

» Status
* go_peer_device_name
e mac

* go_peer_device_name_len

* wps_dev_password_id

* own_ssid

* own_ssid len

SL_WLAN_P2P_DEV_FOUND_EVENT - Naotifies that the device is found; relevant in P2P mode. Event
parameters:

» go_peer_device_name

e mac

* go_peer_device_name_len

* wps_dev_password_id

* own_ssid

e own_ssid_len

SL_WLAN_P2P_NEG_REQ_RECEIVED_EVENT — Notifies that the negotiation request received an
event; relevant in P2P mode. Event parameters:

e go_peer_device_name

s mac

» go_peer_device_name_len

* wps_dev_password_id

e own_ssid

e own_ssid_len

SL_WLAN_CONNECTION_FAILED_EVENT — Notifies negotiation failure; relevant in P2P mode. Event
parameters:

» status

Netapp

SL_NETAPP_IPV4_IPACQUIRED_EVENT — Notifies IPv4 enquired. Event parameters:
. |p

* gateway

e dns

SL_NETAPP_IP_LEASED_EVENT — Notifies STA IP lease; relevant in AP or P2P GO mode. Event
parameters:

e ip_address
» lease_time
e mac

SL_NETAPP_IP_RELEASED_EVENT — Notifies STA IP release; relevant in AP or P2P GO mode. Event
parameters:

* ip_address

e mac
* reason
SWRU368-June 2014 Asynchronous Events 147

Submit Documentation Feedback

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Socket

13 TEXAS
INSTRUMENTS

www.ti.com

19.3

19.4

SL_NETAPP_HTTPGETTOKENVALUE_EVENT — Notifies token is missing. Tries to retrieve this value
from host. Event parameters:

* httpTokenName

* httpTokenName length

SL_NETAPP_HTTPPOSTTOKENVALUE_EVENT — Notifies a new post with the included parameters.
Event parameters:

e action

* action length

« token_name

» token_name length

» token_value

* token_value length

Socket

SL_SOCKET_TX_FAILED_EVENT — Notifies of Tx failure. Event parameters:
e Status
e Sd

SL_SOCKET_ASYNC_EVENT - Notifies of asynchronous event. Event parameters:
 sd
» type — The event type can be one of the following:

— SL_SOCKET_ASYNC_EVENT_TYPE_SSL_ACCEPT - Accept failed due to SSL issue ( TCP
pass)

— SL_SOCKET_ASYNC_EVENT_TYPE_RX FRAGMENTATION_TOO_BIG — Connectionless
mode, Rx packet fragmentation > 16K, packet is released.

— SL_SOCKET_ASYNC_EVENT_TYPE_OTHER_SIDE_CLOSE_SSL _DATA _NOT_ENCRYPTED -
Remote side down from secure to unsecure

* value

Device

SL_DEVICE_FATAL_ERROR_EVENT - Notifies of fatal error; needs to perform device reset. Event
parameters:

e Status
» sender

148

Asynchronous Events SWRU368—-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Appendix A
I3 TEXAS SWRU368—June 2014

INSTRUMENTS
Host Driver Architecture

A.1 Overview
From a software perspective, the system can be separated into four parts:
» User application
* (CC3100 Host driver — Platform independent part
— Host driver API
— Main driver logic and flow
e CC3100 Host driver — Platform dependent part
— OS wrapper implementation
— Transport layer (SPI/UART) implementation

* Figure A-1
I'f—hast
User Application
T | Build and
me parse the silo
2 L I messages and
E’ 3 | API| | i events
Y v v Y Y Y ‘
device wlan socket netapp netconfig nymem
A A ' I A
User
Config
Y
Handle the
driver logic
(e.g. flow —
control etc) " sldrv ' Legend s
Platform Independent
(Tl Responsibility)
: : Platform Dependent
I (User Responsibility)

Y 0S5 Wrapper SPI UART

User Configurable

User Application

\ =/

Figure A-1. CC3100 Driver Configuration

SWRU368-June 2014 Host Driver Architecture 149

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Overview

13 TEXAS
INSTRUMENTS

www.ti.com

A.1.1 CC3100 Host Driver - Platform Independent Part

The host driver implementation includes the driver API, CC3100 initialization, CC3100 commands,
commands response handling, asynchronous event handling, data flow, and transport layer interface. All
are platform-independent and OS-independent code provided by TI. The driver APIs are organized into six
silos reflecting six different logical API types:

Device API — Handles the HW related API
WLAN API — Handles the WLAN, 802.11 protocol related functionality

Socket API — The most common API set to be used by the user application. The CC3100 socket API
complies with the Berkeley socket APls.

NetApp API — Handles additional networking protocols and functionality, delivered as a
complementary part of the on-chip content.

NetCfg API — Handles configuration of different networking parameters

NVMem API — Handles access to the SFlash component, for read and write operations of networking
or user proprietary data

A.1.2 CC3100 Host Driver - Platform Dependent Part

The driver has two SW components supplied by the user:

Transport layer implementation — Mandatory

The driver code provides the required transport and bus interfaces.

It is up to the user to provide the function implementation per the transport layer chosen (SPI or
UART), and the platform used.

OS Wrapper — Optional
The driver code provides the required OS wrapper interface.
To use an OS, first provide the function implementation per the OS and platform used.

A.1.3 CC3100 Driver Configuration

The driver provides a configuration file, allowing the user to control the supported API sets, memory
allocation module, OS usage and more. In addition, some pre-configuration options are provided. A pre-
configuration is a set of customizations and settings of the driver already made and tested by Tl for a
specific scenario.

A.1.4 User Application

The user application is developed and owned by the user. The application interfaces with the CC3100
driver using the driver APIs and asynchronous driver events.

A.2 Driver Data Flows

A.2.1 Transport Layer Protocol

The types of messages used by the host driver are:

Command [ Host -> CC3100 ]
Command Complete [ CC3100 -> Host ]
Async Event [ CC3100 -> Host ]

Data [ Host <-/-> CC3100 ]

150 Host Driver Architecture SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com Driver Data Flows

A.2.2 Command and Command Complete

A command is any message from the host to CC3100 which isn’'t a data packet (send or receive). The
host driver supports a single command at a time. Before sending the next command, the driver waits for a
command complete message received from the CC3100. To avoid blocking the driver for long periods of
time in terms of RT and embedded systems, in some commands the CC3100 sends the command
complete immediately after the command is received and validated, and sends an asynchronous event
when the execution of the command is completed.

Tx DATA DATA | oMD | — DATA

Rx CMD Cmplt ASYNC Evt

——

Link is Blocked for other
commands/data transmission

Figure A-2. Blocked Link

A.2.3 Data Transactions
A data message is any information (usually TCP or UDP packets) sent to or from the user using the
socket send and receive APIs.

A.2.3.1 Data Send (From Host to CC3100)

Sending data to the CC3100 is similar to a command flow. The difference is that there is no command
complete message for a data packet, thus the host is not blocked or waiting for a message. Data packets
can be sent sequentially from the user application; the driver is responsible for avoiding buffer overrun by

using data flow control logic.
A.2.3.2 Data Flow Control
Status Field — Part of each message (async event) from CC3100 to the host:
» TxBuff — Indicates the number of available Tx buffers within the CC3100 device.

32 (MSB) 1(LSB)
I TxBuff

Figure A-3. Data Flow Control

» The host can send up to TxBuff packets (<1500B) without waiting for a response from the CC3100
device.

e The CC3100 device generates a dummy event if the number is changed (threshold from last update /
timeout if change is smaller than the threshold).

A.2.3.3 Data Receive (From CC3100 to Host)

Receiving data from the CC3100 is done in two manners: blocking and nonblocking.

SWRU368-June 2014 Host Driver Architecture 151
Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Driver Data Flows www.ti.com

A.2.3.4 Blocking Receive

Upon a call to a blocking sl_Recv, the host driver issues a command to the CC3100. The driver is
blocked, waiting until an async event notifies the driver of a data packet ready to be read within the
CC3100 device. After receiving this async event, the driver continues to read the data packet from the
host.

A.2.3.5 Non-Blocking Receive

If the command complete status returns with a status notifying that no data is waiting for the host, the
command returns with pending return status (SL_EAGAIN). If data is waiting for the host, the driver
continues to read the data packet from the host.

152 Host Driver Architecture SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Appendix B

SWRU368-June 2014

HTTP Server Supported Features and Limitation

B.1 Supported Features
1. HTTP version support: 1.0
. HTTP requests: GET, POST
. Supported file types: .html, .htm, .css, .xml, .png, .gif
. HTML form submission of data uses POST method.
. Supported content-type of POST request: application/x-www-form-urlencoded

o 01~ WDN

. HTTP port number can be configured — default is port 80.

7. HTTP web server authentication:

(a) Can be enabled or disabled (disabled by default).

(b) Authentication name, password and realm are configurable.
8. SimpleLink domain name (in AP mode) can be configured.

9. Built-in default page that provides device configuration, status, and analyzing tools (with no
configuration necessary from the user side).

10. Option to set the device configuration as part of user-provided pages.

11. For security purposes, the web server can access only the following root folders on the file system:
(a) www/

(b) www/safe/

12. Force AP support mode — In this mode the HTTP server will behave as follows:

(a) The server will permit access only to the www/safe/ folder in the file system.

(b) Special Clear all Profiles button in the internal configuration web pages.

13. Default values:

* Domain name: www.mysimplelink.net or mysimplelink.net
» Authentication Name: admin

* Authentication Password: admin

e Authentication Realm: Simple Link CC31xx

B.2 Limitations
1. HTTPS is currently not supported.
2. The HTTP web server can host a single domain only.

3. HTML form submission using GET method is not supported.

SWRU368-June 2014 HTTP Server Supported Features and Limitation 153

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Appendix C

SWRU368-June 2014

SSL Limitations

1. Only two SSL connections are allowed.

154 SSL Limitations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Appendix D

SWRU368-June 2014

How to Generate Certificates, Public Keys and CA'’s

1. Download and install the latest package of OpenSSL (either Windows or Linux).
2. In the installation path \bin library, find openssl.exe.

Private Key

To create a new private key for a certificate, use:

openssl genrsa -out privkey.pem 2048

Notes:

» The default key size is 2048, but the user can use any desired protocol key size (1024, 2048, 4096...).
» The name of the file is replaceable.

e The default format is PEM which is in ASCII form. In many systems the binary format, DER, is more
popular due to its smaller size. To convert between the formats use: openssl rsa -in privkey.pem
—inform PEM —out privkey.der —outform DER

Certificate and CA
The CA (Certificate Authority) is a certificate which is self-signed and used for signing other certificates.
To generate a CA, use the following command and insert the desired values:

openssl req -new -x509 -days 3650 -key privkey.pem -out root-ca.pem

Notes:

» The days argument determines how long the certificate is valid.

» The key is generated in the Private Key section of this document, in PEM format.
* The output is PEM format. To convert from PEM to DER use:

openssl x509 -in input.crt -inform PEM —out output.crt
-outform DER

To generate a certificate, prepare the certificate document first. Similar to making a CA, fill the desired
values such as country code name and so forth with the command:

openssl req -new -key privkey.pem -out cert.pem
The private key is different from the one used for the CA. Each certificate should have its own private key.

After generating a certificate form (also called certificate request), sign it with another certificate. The form
is usually signed with the CA but to make a chain, sign it with another certificate.

To do the signing process use:

openssl x509 -req -days 730 -in cert.pem -CA ca.pem -CAkey CAPrivate.pem -
set_serial 01 -out cert.pem

Notes:

» The example uses the CA to sign on the generated certificate.
» The key in the example is the CA private key.

» The days argument determines how long this certificate is valid.
e -set_serial 01 is needed.

To generate a CA and a certificate signed by the CA do the following:
1. Generate a private key for the CA.
2. Generate a private key for the certificate.

SWRU368-June 2014 How to Generate Certificates, Public Keys and CA’s 155

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Appendix D www.ti.com

3. Create a CA with its own private key.

4. Create a certificate request with its own private key.

5. Sign the certificate with the CA and the CA private key.

6. To create a chain, create another private key and certificate request and sign it with the first certificate.

A shal can be signed with a private key. To make a shal code out of data.txt file use:
openssl dgst -shal data.txt > hash

To RSA sign the shal code with a private key, use:
openssl dgst —binary —out signature.bin -shal -sign privatekey.pem BufferToSign.bin

156 How to Generate Certificates, Public Keys and CA'’s SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Appendix E

SWRU368-June 2014

Transceiver Mode Limitations

1. The user can open one transceiver socket in the system.
2. The length of a received packet is trimmed if it exceeds 1472 bytes.
3. Cannot transmit frame over 1472 bytes or below 14 bytes.

4. If using the SimpleLink studio, the maximum throughput of the SPI is 5~6Mbps: in a crowded Wi-Fi
medium there is packet loss.

5. The transceiver will not open if in connection or connected mode. Auto connection mode is also
considered as connected mode, even if not connected.

SWRU368-June 2014 Transceiver Mode Limitations 157

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

I3 TEXAS
INSTRUMENTS

Appendix F

SWRU368-June 2014

Rx Statistics Limitations

1. The maximum histogram cell capacity is 65535 for both RSSI and rate. If more packets are received,
the accumulation will stop.

2. All other statistics are held in unsigned integers and wraparound when exceeding the maximum.

158 Rx Statistics Limitations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

. Appendix G
l TEXAS SWRU368—-June 2014

INSTRUMENTS
MDNS Supported Features and Limitations

G.1 Supported Features

1. Advertises:
* Register and advertise services
» External services advertise:
— Any service a user is willing to add.
— Services using host API.
— Services written in the mDNS DB.
* Internal services advertise:
— Services that are advertised by default without a relation to mDNS DB.
— The internal capabilities of the product.
— HTTP server — Peers can find the IP and browse without a DNS server.

N

. Responds:
Response to queries.
Ignores queries that are already familiar with services.

3. Looks for services in the local network by using:
One shot query
Continuous query

4. Gathers the known information on peer services using the Get service list API:
Full services with text — name, host, IP, port, text.

Full services without text — name, host, IP, port.

Short services — IP, port.

5. Masks peer services received in responses or peer advertisements.

6. Sets advertising timing. Reconfigures the timing parameters employed by mDNS when sending the
service announcements: how many times and when a service is advertised (not related to responding
queries).

G.2 Specific Behavior and Assumptions
1. Advertise up to five external services.
2. Advertise one internal service — HTTP.

3. Support or receive up to eight different services in the peer cache (use filter for storing only the required
services).

4. Default names:

(a) Default value of target name — MAC-mysimplelink.local the target name is the name that should be in
‘A’ query (query for getting the IP). The name is assembled from the MAC address of the target, the
word mysimplelink, and the domain of the local network. This name can be changed by the user by
setting the URN name or by a smart-configure operation.

(b) Default name of internal services: MAC@mysimplelink._type. local. For example,
MAC@mysimplelink._http._local.

SWRU368-June 2014 mDNS Supported Features and Limitations 159

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

Limitations www.ti.com

5. By default the mDNS is started.

6. In cases of registering services, there is a partial check if the name is legal. The user must send the
legal service name.

7. Some of the API parameters use in_out. Set these parameters again in case of an API recall.

G.3 Limitations
The following are the known limitations of the mDNS feature.
1. The mDNS machine stops and starts when all services are deleted; the peer cache is deleted.
2. If the user registers a unique service but a service with the same name already exists in the network,
then the service name is changed to "name (number)," for example PC1 (2)_ipp._tcp.local. In this case,
the name in the DB is the original name but the advertising uses the new name.
3. Deleting a unique name that was changed because of mismatch between the names (the advertising
name and the DB name) causes the mMDNS machine to stop and start, and deletes the peer cache.
4. If there is a one shot query but the peer cache is full, there will be no place to set the query. The peer
cache will be deleted, and then the query sent.
5. There is a partial check if the service name that is registered is legal. The user must send a legal name.
6. When using get host by service, only one answer is returned. To see all the answers, wait for all peer
answers to be sent and received, then read the answers by using the API get service list.
7. The max buffer list size of the API get service list is about 1500 bytes. Requests for a list bigger than
this size returns an error.
G.4 Errors Numbers and Corrections
The table below depicts error numbers that can be returned, their meaning, and possible corrections. The
error number should be smaller than zero.
Table G-1. Error Numbers
Error number Meaning Correction
200 confgured, regietorng for another external | DeIEte another exising registered servie,
service is not allowed. 9 gain.
201 Trying to register a service that already Don't register this service.
exists.
-203 Trying to delete ‘Ziiirtwce that does not Don't unregister this service.
-204/-179 lllegal service name (the name is not Change the service name, and register
allowed according to the RFC). the service again.
Buffer resource problem in the NWP (list . .
-205 cannot be returned). Wait, and call the API again.
206 List size buffer is bigger than internally Change the parameters of the API to
allowed in the NWP (API get service list). decrease the size of the list.
207 lllegal length of one of the mDNS Set Change the length value and respectively
functions. the set parameter.
lllegal value of flags parameters in API get
208 service list. Use value from ENUM —
Flags — indicates the Type of the services SINetAppGetServiceListType_e
that are returned.
. - The user increases the size of the
Returned list buffer is bigger than the user
-230 allocated buffer (API get service list). allocated buffer or Irizguests for a smaller
-161 mDNS is not operational as the device Connect the device to an AP to get an IP
has no IP. address.
-162 mDNS parameters errors Check the API parameters
160 mDNS Supported Features and Limitations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

13 TEXAS
INSTRUMENTS

www.ti.com

Errors Numbers and Corrections

Table G-1. Error Numbers (continued)

Error number Meaning Correction
-163/-182 mDNS cache error Stop the mDNS and restart it.
-164 to -176 Internal MDNS error
177 No service is found (APl —get host by Request again until service is found (if
service) exists).
. L - Delete all services by using API unregister
Adding a service is not allowed as it . . -
-178 already exists (duplicate service). service with NU;Ig_éit:en add services
-180 mDNS is not started Start the mDNS
Host name error. Host name format is not .
181 allowed according to REC Change the host r:]?gl'\elzsand start again the
1033,1034,1035, 6763. ’

SWRU368-June 2014
Submit Documentation Feedback

mDNS Supported Features and Limitations 161

Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Appendix H
l ’{E)S(?SUMENTS SWRU368-June 2014

Socket Limitations

There are eight regular (un-secured) sockets and two secured* sockets available on CC3100. Table H-1
shows the number of available sockets, divided by client or server.

* Secure sockets indicate a SSL/TLS connection.

Table H-1. Available Sockets

Role Number of Normal Sockets Number of Secure Sockets
Client 8 2
Server 8 - number of listening sockets 2

The client side can use eight normal sockets and two secure sockets, or all ten simultaneously.

The number of available sockets for communication depends on the number of listening sockets. If one
socket is reserved for public socket and used to listen to incoming client requests, this leaves seven
private sockets for actual client communication. If there are two server sockets for listening, only six
private sockets will remain for communication.

The number of available server sockets for UDP connection remains eight as UDP is a connectionless
socket. Since it does not require a socket to be in listening mode, all eight can be used for client
communication.

Server side secure socket (SSL/TLS) connection number isn't affected because a regular server socket
can be used for listening. After accepting a new client connection, the user can switch to a secure socket.

162 Socket Limitations SWRU368-June 2014

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

Programmer's Guide
l ¥IE)S($1§UMENTS SWRU368-June 2014

H.1 Important Notice

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to
discontinue any product or service without notice, and advise customers to obtain the latest version of
relevant information to verify, before placing orders, that information being relied on is current and
complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability. Tl
warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the
extent Tl deems necessary to support this warranty. Specific testing of all parameters of each device is
not necessarily performed, except those mandated by government requirements. CERTAIN
APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS
UNDERSTOOD TO BE FULLY AT THE CUSTOMER'’S RISK. In order to minimize risks associated with
the customer’s applications, the customer to minimize inherent or procedural hazards must provide
adequate design and operating safeguards. Tl assumes no liability for applications assistance or customer
product design. Tl does not warrant or represent that any license, either express or implied, is granted
under any patent right, copyright, mask work right, or other intellectual property right of Tl covering or
relating to any combination, machine, or process in which such semiconductor products or services might
be or are used. TI's publication of information regarding any third party’s products or services does not
constitute TI's approval, warranty or endorsement thereof.

SWRU368—-June 2014 163

Submit Documentation Feedback
Copyright © 2014, Texas Instruments Incorporated


http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SWRU368

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESDA48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI's terms and conditions of sale
supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent Tl deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.

Tl assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of significant portions of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. Tl is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
Tl is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify Tl and its representatives against any damages arising out of the use
of any Tl components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.

No Tl components are authorized for use in FDA Class Ill (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.

Only those Tl components which Tl has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, Tl will not be responsible for any failure to meet ISO/TS16949.

Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom  www.ti.com/communications

Data Converters
DLP® Products

DSP

Clocks and Timers
Interface

Logic

Power Mgmt
Microcontrollers
RFID

OMAP Applications Processors
Wireless Connectivity

dataconverter.ti.com

www.dlp.com

dsp.ti.com
www.ti.com/clocks

interface.ti.com

logic.ti.com

power.ti.com
microcontroller.ti.com

www.ti-rfid.com
www.ti.com/omap

Computers and Peripherals
Consumer Electronics
Energy and Lighting
Industrial

Medical

Security

Space, Avionics and Defense
Video and Imaging

Tl E2E Community

www.ti.com/wirelessconnectivity

www.ti.com/computers

www.ti.com/consumer-apps

www.ti.com/energy
www.ti.com/industrial

www.ti.com/medical

www.ti.com/security
www.ti.com/space-avionics-defense

www.ti.com/video

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2014, Texas Instruments Incorporated


http://www.ti.com/audio
http://www.ti.com/automotive
http://amplifier.ti.com
http://www.ti.com/communications
http://dataconverter.ti.com
http://www.ti.com/computers
http://www.dlp.com
http://www.ti.com/consumer-apps
http://dsp.ti.com
http://www.ti.com/energy
http://www.ti.com/clocks
http://www.ti.com/industrial
http://interface.ti.com
http://www.ti.com/medical
http://logic.ti.com
http://www.ti.com/security
http://power.ti.com
http://www.ti.com/space-avionics-defense
http://microcontroller.ti.com
http://www.ti.com/video
http://www.ti-rfid.com
http://www.ti.com/omap
http://e2e.ti.com
http://www.ti.com/wirelessconnectivity

	Table of Contents
	1  Overview
	1.1 Document Scope
	1.2 Host Driver SW Concepts
	1.3 Common Terminology and References

	2 Writing a Simple Networking Application
	2.1 Overview
	2.1.1 Basic Example Code


	3 Device Initialization
	4 Device Configurations
	4.1 Overview
	4.2 Device Parameters
	4.3 WLAN Parameters
	4.3.1 Advanced

	4.4 Network Parameters
	4.5 Internet and Networking Services Parameters
	4.6 Power-Management Parameters
	4.6.1 Power Policy
	4.6.2 Advanced

	4.7 Scan Parameters
	4.7.1 Scan Policy


	5 WLAN Connection
	5.1 Manual Connection
	5.1.1 STA
	5.1.2 P2P

	5.2 Connection Using Profiles
	5.3 Connection Policies
	5.4 Connection Related Async Events
	5.4.1 WLAN Events
	5.4.2 Network Events


	6 Socket
	6.1 Overview
	6.1.1 TCP
	6.1.2 UDP

	6.2 Socket Connection Flow
	6.3 TCP Connection Flow
	6.3.1 Client Side
	6.3.2 Server Side

	6.4 UDP Connection Flow
	6.4.1 Client Side
	6.4.2 Server Side

	6.5 Socket Options
	6.5.1 Blocking versus NonBlocking
	6.5.2 Secure Sockets

	6.6 SimpleLink Supported Socket API

	7 Device Hibernate
	8 Provisioning
	8.1 Provisioning
	8.1.1 SmartConfig
	8.1.1.1 General Description
	8.1.1.2 How to Use / API
	8.1.1.2.1 Automatic Activation
	8.1.1.2.2 Manual Activation
	8.1.1.2.3 Stopping Smart Config


	8.1.2 AP Mode
	8.1.2.1 General Description
	8.1.2.2 How to Use / API
	8.1.2.3 Things to Note when Configuring AP Provisioning

	8.1.3 WPS
	8.1.3.1 General Description
	8.1.3.2 How to Use / API
	8.1.3.3 Example of Using WPS



	9 Security
	9.1 WLAN Security
	9.1.1 Personal
	9.1.2 Enterprise
	9.1.2.1 General Description
	9.1.2.2 How to Use / API
	9.1.2.3 Example
	9.1.2.4 Limitations


	9.2 Secured Socket
	9.2.1 General Description
	9.2.2 How to Use / API
	9.2.2.1 Selecting a Method
	9.2.2.2 Selecting a Cipher Suit
	9.2.2.3 Selecting the Secured Files for the Socket

	9.2.3 Example of Using the SSL
	9.2.4 Supported Cryptographic Algorithms

	9.3 File System Security

	10 AP Mode
	10.1 General Description
	10.2 Setting AP Mode – API
	10.3 WLAN Parameters Configuration – API
	10.4 WLAN Parameters Query – API
	10.5 AP Network Configuration
	10.6 DHCP Server Configuration
	10.7 Setting Device URN
	10.8 Asynchronous Events Sent to the Host
	10.9  Example Code

	11 Peer to Peer (P2P)
	11.1 General Description
	11.1.1 Scope
	11.1.2 Wi-Fi Direct Advantage
	11.1.3 Support and Abilities of Wi-Fi Direct in CC3100
	11.1.4 Limitations

	11.2 P2P APIs and Configuration
	11.2.1 Configuring P2P Global Parameters
	11.2.1.1 Set P2P role
	11.2.1.2 Set P2P Network Configuration
	11.2.1.3 Set P2P Device Name
	11.2.1.4 Set P2P Device Type
	11.2.1.5 Set P2P Listen and Operation Channels

	11.2.2 Configuring P2P Policy
	11.2.2.1 Configure P2P Intent Value and Negotiation Initiator

	11.2.3 Configuring P2P Profile Connection Policy
	11.2.4 Discovering Remote P2P Peers
	11.2.4.1 How to Start P2P Discovery
	11.2.4.2 How to See/Get P2P Remote Peers (Network P2P List)

	11.2.5 Negotiation Method
	11.2.6 Manual P2P Connection
	11.2.7 Manual P2P Disconnection
	11.2.8 P2P Profiles
	11.2.9 Removing P2P Profiles

	11.3 P2P Connection Events
	11.4 Use Cases and Configuration
	11.4.1 Case 1 – Nailed P2P Client Low-Power Profile
	11.4.2 Case 2 – Mobile Client Low-Power Profile
	11.4.3 Case 3 – Nailed Center Plugged-in Profile
	11.4.4 Case 4 – Mobile Center Profile
	11.4.5 Case 5 – Mobile General-Purpose Profile

	11.5 Example Code

	12 HTTP Server
	12.1 Overview
	12.2 HTTP GET Processing
	12.2.1 Overview
	12.2.2 Default Web Page
	12.2.3 SimpleLink GET Tokens
	12.2.4 User-Defined Tokens
	12.2.5 HTML Sample Code with Dynamic HTML Content

	12.3 HTTP POST Processing
	12.3.1 Overview
	12.3.2 SimpleLink POST Tokens
	12.3.3 SimpleLink POST Actions
	12.3.4 SimpleLink POST Actions
	12.3.5 User-Defined Tokens
	12.3.6 Redirect after POST
	12.3.7 HTML Sample Code with POST and Dynamic HTML Content

	12.4 Internal Web Page
	12.5 Force AP Mode Support
	12.6 Accessing the Web Page
	12.6.1 SimpleLink in Station Mode
	12.6.2 SimpleLink in AP Mode

	12.7 HTTP Authentication Check
	12.8 Handling HTTP Events in Host Using the SimpleLink Driver
	12.9 SimpleLink Driver Interface the HTTP Web Server
	12.9.1 Enable or Disable HTTP Server
	12.9.2 Configure HTTP Port Number
	12.9.3 Enable or Disable Authentication Check
	12.9.4 Set or Get Authentication Name, Password, and Realm
	12.9.5 Set or Get Domain Name
	12.9.6 Set or Get URN Name
	12.9.7 Enable or Disable ROM Web Pages Access

	12.10  SimpleLink Predefined Tokens
	12.10.1 GET Values
	12.10.2 POST Values
	12.10.3 POST Actions


	13 mDNS
	13.1 Overview
	13.2 Services – How to Find Them
	13.3 Start and Stop mDNS
	13.4 Typical Operation Methods
	13.4.1 Find Service RRs (Parameters) – By One-Shot Query
	13.4.2 Find Service RRs (Parameters) – By Continuous Query
	13.4.3 Register Service

	13.5 Detailed APIs
	13.5.1 API – Get Host by Service
	13.5.2 API - Get Service List
	13.5.3 API – Register Service
	13.5.4 API – Unregister Service
	13.5.5 API – Set Masking Receive Services
	13.5.6 API – Set Continuous Query
	13.5.7 API – Set Timing Parameters for Advertising
	13.5.8 API – Get Event Mask
	13.5.9 API – Get Continuous Query
	13.5.10 API – Get Timing Parameters for Advertising


	14 Serial Flash File System
	14.1 Overview
	14.2 File Download and Creation
	14.3 File Download, Open for Write
	14.4 File Open for Read
	14.5 Secure System Files
	14.6 Commit Creation Flag
	14.7 Security Alert
	14.8 Tokens
	14.9 Signature
	14.10 Option for File Creation
	14.11 Code Example

	15 Rx Filter
	15.1 Overview
	15.2 Detailed Description
	15.3 Examples
	15.4 Creating Trees
	15.5 Rx Filter API
	15.5.1 Code Example


	16 Transceiver Mode
	16.1 General Description
	16.2 How to Use / API
	16.3 Sending and Receiving
	16.4 Changing Socket Properties
	16.5 Internal Packet Generator
	16.6 Transmitting CW (Carrier-Wave)
	16.7 Connection Policies and Transceiver Mode
	16.8 Notes about Receiving and Transmitting
	16.8.1 Receiving

	16.9 Use Cases
	16.9.1 Sniffer

	16.10 TX Continues

	17 Rx Statistics
	17.1 General Description
	17.2 How to Use / API
	17.3 Notes about Receiving and Transmitting
	17.4 Use Cases

	18 API Overview
	18.1 Device
	18.2 WLAN
	18.3 Socket
	18.4 NetApp
	18.5 NetCfg
	18.6 File System

	19 Asynchronous Events
	19.1 WLAN
	19.2 Netapp
	19.3 Socket
	19.4 Device

	A Host Driver Architecture
	A.1 Overview
	A.1.1 CC3100 Host Driver - Platform Independent Part
	A.1.2 CC3100 Host Driver - Platform Dependent Part
	A.1.3 CC3100 Driver Configuration
	A.1.4 User Application

	A.2 Driver Data Flows
	A.2.1 Transport Layer Protocol
	A.2.2 Command and Command Complete
	A.2.3 Data Transactions
	A.2.3.1 Data Send (From Host to CC3100)
	A.2.3.2 Data Flow Control
	A.2.3.3 Data Receive (From CC3100 to Host)
	A.2.3.4 Blocking Receive
	A.2.3.5 Non-Blocking Receive



	B HTTP Server Supported Features and Limitation
	B.1 Supported Features
	B.2 Limitations

	C SSL Limitations
	D How to Generate Certificates, Public Keys and CA’s
	E Transceiver Mode Limitations
	F Rx Statistics Limitations
	G mDNS Supported Features and Limitations
	G.1 Supported Features
	G.2 Specific Behavior and Assumptions
	G.3 Limitations
	G.4 Errors Numbers and Corrections

	H Socket Limitations
	H.1 Important Notice

	Important Notice

