可穿戴尺寸生成器可跟踪野生动物的一生

发布者:EtherealEssence最新更新时间:2024-05-27 来源: elecfans关键字:跟踪  野生动物 手机看文章 扫描二维码
随时随地手机看文章

可穿戴设备和几乎所有其他技术一样,都需要能源。不过,幸运的是,在可穿戴设备适度的电力预算下,能源实际上无处不在。它存在于阳光和无线电波、皮肤的汗液和体温、一个人的动作和脚步声中。如今,技术正在成熟,可以收获大量的能量赠品,将可穿戴设备从需要电池的状态中解放出来。这对一系列公司和研究人员来说似乎很有吸引力。


“能源是我们认为理所当然存在的东西,感觉就像空气一样无所不在。但我们确实需要长期输出这种能源,”Alper Bozkurt说,他与Veena Misra共同领导了北卡罗来纳州立大学先进自供电集成传感器和技术中心(Advanced Self-Powered Systems of Integrated Sensors and Technologies,ASSIST)。


今天最著名的可穿戴能源收集技术当然是太阳能,它从阳光或环境光中提取电子。但太阳能只是刚刚开始。研究人员发现,有多种选择可以获得足够的微瓦能量来更换可穿戴设备的电池。其中包括压电发电机和摩擦发电机,它们利用机械应变和材料的静电特性来发电。同时,众所周知的电磁感应现象会产生颠簸、跳跃和大步,产生微小但仍然有用的电流。

虽然可穿戴设备通常不需要太多电力,但可穿戴设备必须易于佩戴。一个装有巨大太阳能电池板的背包在技术上可能可行,但在现实中不行。

需求和能源的多样性在最近的一系列能源收集研究中显而易见,包括一些整合多种模式的混合工作。

汗液的力量

加州理工学院的Wei Gao开发了一种自供电的“电子皮肤”。他说,电子皮肤是一种直接应用于皮肤的传感器嵌入式设备,用于读取和传输心率、体温、血糖和代谢副产物等健康指标。

Gao说:“个性化医疗可以彻底改变传统医疗实践。但要结合许多不同类型的传感器,我们需要不同的材料设计和工具。其中最重要的是能量存储(和发电)。”

Gao的第一款电子皮肤于2020年4月生产,由柔软柔韧的橡胶制成,它利用患者的汗水为设备提供动力。该设备使用内置的燃料电池,吸收汗液中的乳酸,并将其与大气中的氧气结合,生成水和丙酮酸盐。通过这个过程,生物燃料产生了足够的电力,为电子皮肤的传感器和数据传输提供动力,将电容器从1.5伏持续充电到3.8伏,持续充电约60小时。(对于电容器来说,电压转化为存储的电子——电容器两端的电压降与其总电荷成比例。)

几个月后,Gao和他的团队开发了一个电子皮肤模型,该模型利用运动产生的动能来产生摩擦电,即从不同静电性质的材料的相对运动中释放电流。这种第二代电子皮肤夹着聚四氟乙烯、铜和聚酰亚胺薄片,随着人的移动而滑动,产生0.94毫瓦的最大功率。

团队接下来将转向3D打印。在9月份发表在《科学进展》杂志上的一项研究(https://www.science.org/doi/10.1126/sciadv.adi6492)中,他们3D打印了一种名为e3皮肤(表流体弹性电子皮肤)的多模式健康跟踪系统的基本组件——物理传感器化学传感器、微流体和超级电容器。

该平台使用了传感器阵列、水凝胶涂层电极等,以及由太阳能电池供电的微型超级电容器。Gao说,3D打印的精度使研究人员能够创建用于健康状况早期预警和诊断的定制组件。

可穿戴技术与动物?

许多关于可穿戴技术的讨论都集中在健康或其他人类需求上。但由于目前的技术还不够,生物学家们也在研究用于追踪动物的能量采集。电池的能量总是不及动物 —— 太阳能对夜间活动的动物或弱光环境中的生物不起作用。一个从跑步者晚间慢跑中获取能量的小装置显然不适用于重达一吨的大型野牛。

这些挑战激发了哥本哈根大学、丹麦技术大学和德国马克斯·普朗克动物行为研究所的研究团队,为他们的目的构建一个更好的可穿戴尺寸生成器:理想情况下,跟踪野生动物的一生。目前,对于大多数哺乳动物来说,使用电池和太阳能设备是无法实现这一目标的。

在5月份发表在PLoS One上的研究(https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0285930 - sec010)中,他们详细介绍了Kinefox,一种野生动物只需通过移动就能充电的GPS跟踪器。该团队用三种动物测试了他们的设备:四只家狗、一匹埃克斯穆尔小马和一头欧洲野牛。

该团队的灵感来源于自18世纪末以来一直存在的自动上弦手表,它将手腕运动转化为能量。因此,研究人员购买了一款为可穿戴和物联网设备设计的商用微型发电机,名为Kinetron MSG32。他们将其与锂离子电容器和定制的GPS追踪器相结合,该追踪器通过Sigfox低功耗无线网络传输数据。

马克斯·普朗克动物行为研究所的客座科学家Troels Gregersen说:“我们想把已经创造出来的东西进行调整使其适用于动物追踪,尽管它最初并不是为此而设计的。”

研究人员的第一个版本将Kinefox安装在动物现有的项圈和背带上,以便观察和学习。

然而,Gregersen说:“我们给野牛戴上的第一个项圈立即被摧毁了。它们是900公斤重的动物,又在奔跑。这在人类可穿戴设备中不是一个用例。”

根据第一个版本的结果,该团队最终创建了一个自定义跟踪器和项圈。他们将微型发电机的钟摆式自动手表机芯粘在一个铁磁环上,将组合放在一圈铜线周围。当钟摆随着动物的运动来回摆动时,环在线圈中产生交流电,电压倍增电路将其转换为直流电。

Gregersen说:“当动物出生时,可以放置一次追踪器,这很有价值。如果某个东西可以传输新类型的数据,或者它可以持续更长的时间,那么它的应用就具有价值。”

Kinefox是开源的,文件发布在GitHub上。并且,马克斯·普朗克的研究人员表示,传统的野生动物跟踪器的价格为3500至4000欧元,而Kinefox的材料价格约为270欧元。Gregersen说,该团队正在与总部位于荷兰蒂尔堡的Kinetron公司进行谈判,以生产专门为动物设计的微型发电机。

挑战:可持续性和行业合作

展望未来,一些研究人员专注于将独特的材料结合起来,并用更可持续的材料创建能源收集系统。包括日本东北大学研究人员(https://www.sciencedirect.com/science/article/pii/S1359835X2300163X?via%3Dihub)在内的一个团队最近开发了一种耐用、高效的能量采集器,该采集器将压电复合材料与碳纤维增强聚合物(CFRP)相结合。

该小组使用CFRP、铌酸钠钾(KNN)纳米颗粒和环氧树脂制造了他们的设备。东北大学研究生、该研究的合著者Yu Yaonan说,即使使用了10万次,该设备仍然可以储存它产生的电力。

Yu说,这种强度和能量产生的结合可以用于几种类型的可穿戴设备和物联网应用,包括加固桥梁和高速公路的基础设施系统,当出现裂缝、坑洞或其他损坏时,这些系统可以感知。

另外,ASSIST中心的Bozkurt表示,最佳应用领域将是数据分析,以及匹配能量收集能力,以收集和传输用户真正需要的数据。


关键字:跟踪  野生动物 引用地址:可穿戴尺寸生成器可跟踪野生动物的一生

上一篇:体戴式传感器在帕金森病患者常规护理中使用的最佳范围和方法
下一篇:可穿戴传感器能够实现准确的实时检测

推荐阅读最新更新时间:2024-11-02 02:28

数字温度传感器DS18B20在卫星电源系统中的应用
0 引言 卫星电源系统主要用来为整个卫星的正常运行提供稳定的电源。它是卫星电能产生、储存、变换、调节、传输分配和管理的重要分系统。其基本功能是通过物理和化学过程将太阳的光能、核能或化学能转化为电能,并根据需要对电能进行存储、调节和变换,然后向卫星其它各分系统不间断供电。我国的卫星大都采用太阳能/蓄电池供电系统。蓄电池充电终压控制采用电压-温度补偿法,即V-T曲线控制。蓄电池温度传感器传统上一般选用热电耦或铂电阻。模拟电路硬件控制是温度补偿的常用方法,已经在我国各种型号的卫星上获得成功应用。 为加快我国卫星电源分系统的数字化设计。充分体现数字电路体积小、重量轻、功耗低、适应性强和可靠性高等优点,提高电源分系统的电能重量比,本文以
[应用]
摄像机组合应用 深入多目标智能跟踪技术
    多目标识别与跟踪技术是以单球机智能跟踪作为基础,能够同时实现对大范围内多个活动目标的智能识别与跟踪,并对其中单个目标进行智能跟踪的技术。多目标识别与跟踪技术的实现,是以单球机智能跟踪技术系统作为基础的,因此市场上可见到的具有多目标识别与跟踪产品的厂商,往往都会有对应的智能跟踪球机产品系列。本文着重探讨多目标识别过程及其技术发展状况。     多目标跟踪过程     数据关联:在观测数据和目标之间建立起对应关系。常见的方法有最近邻算法、联合概率数据关联滤波器、多假设跟踪算法。状态估计:每个目标根据其对应的观测进行状态估计     通常采用基于贝叶斯理论的方法,将多目标跟踪问题转化成对多个单目标的跟踪过程,并建立
[安防电子]
脉冲S参数测量中的跟踪技术
使用矢量网络分析仪测试 S参数通常是对被测器件施加连续波激励来完成的,然而在某些情况下, S参数的测量必须使用脉冲激励。例如,在测试诸如功率晶体管之类的非热耦合被测器件的 S参数时,连续波激励所积累的热量可能会损坏被测器件,而使用脉冲激励进行测量则可以安全地对这类器件的特性进行表征。通过正确选择脉冲激励的占空比,可以保证测量的平均功率保持在较低的水平,避免产生过热现象。另一个需要进行脉冲 S参数测量的例子是对通常工作在脉冲或猝发信号状态下 例如雷达系统和许多数字调制通信系统中的器件进行测量。今天,脉冲 S参数的测量已经可以使用自身就能够产生脉冲激励并对脉冲正弦信号进行精确测量的矢量网络分析仪来完成。   脉冲信号的频谱可以借助
[测试测量]
脉冲S参数测量中的<font color='red'>跟踪</font>技术
U.S.Cellular推车辆监控管理服务 提醒车辆跟踪
美国电信商U.S. Cellular推出CruiseConnect连网装置,CruiseConnect装置插入行车监控计算机(OBD-II)后,可用来提醒家中其它成员车辆的行踪,以及藉由收集的数据分析确保车辆是否曾有超速等不安全行为。 CruiseConnect目前已在U.S. Cellular商店与网站上推出,最低价格从每月15美元起跳。据报导,CruiseConnect是由大陆中兴通讯开发,采用的行动应用程序(App)则是由Modus开发。CruiseConnect可提供一般用户安全通知,也可提供企业作为车队管理工具并将车辆变成Wi-Fi热点。 家长或其它家中成员透过使用U.S. Cellular快速与可靠的网络,可设
[汽车电子]
一种基于压电陶瓷的目标跟踪系统
在试验中,希望接收来自一公里的光斑在成像系统的中心,而由于大气湍流的影响,光斑在成像系统中心附近抖动。目标跟踪就是要通过改变倾斜镜的角度使光斑始终在成像系统的中心。为此,使用位敏传感器采集光斑的位置,微处理器处理数据,得到光斑的的偏移量,最后通过驱动压电陶瓷晶体改变倾斜镜角度。 激光在大气传输时,由于与大气湍流的相互作用,导致光波振幅和相位的起伏。其抖动频率主要是低频成分,压电陶瓷晶体的响应频率在1000Hz 以上,能满足消除大气湍流带来的光斑抖动的影响。在光学跟踪系统中,传统的用于目标跟踪器件为CCD。由于CCD 采集的数据量很大,对后面的数据处理单元的要求很高,并且处理大量的数据增加了处理的复杂性和处理时间。本跟踪系统采用P
[单片机]
一种基于压电陶瓷的目标<font color='red'>跟踪</font>系统
利用纤巧型负载点电路来简化电源电压的跟踪和排序
多电压电子系统常常需要进行复杂的电源电压跟踪或排序,如果未能满足该要求,则会导致系统出错,或甚至在使用现场引发永久性的故障。在满足这些要求过程中所遇到的设计难题经常存在于分布式电源架构中,这里的负载点(POL)DC/DC转换器或线性稳压器散布于PC板空间中,有时还会位于不同的电路板平面上。但问题是:在电路板的布局过程中,电源电路往往是最后一个设计的电路,因此,不管所剩的电路板面积如何之小,都得把它硬塞进去。通常需要采用一种简单、引脚兼容的灵活解决方案来满足这些要求。 LTC2927针对跟踪和排序提供了一种简单和通用的解决方案,具有纤巧的占板面积,而且没有采用串联MOSFET时的缺陷。此外,由于LTC2927能够在不改变电源控制环路
[应用]
真正的天网:英伟达推出首个跨摄像头汽车跟踪数据集
城市利用交通摄像头作为全市范围内的传感器来优化交通流量和管理交通事故潜力巨大。但现有技术缺乏大范围跟踪车辆的能力,这些车辆跨越多个摄像机,分布在不同的十字路口,天气条件也各不相同。 要克服这一难题,必须解决三个截然不同但又密切相关的研究问题:1)单摄像头内目标的检测和跟踪,即多目标单摄像头(MTSC)跟踪;2)跨多摄像头目标重识别,即 ReID;3)跨摄像头网络对目标进行检测和跟踪,即多目标跨摄像头跟踪(MTMC tracking)。MTMC 跟踪可以看作是相机内部 MTSC 跟踪与基于图像的 ReID 的结合,连接相机之间的目标轨迹。 如图 1 所示,多目标跨摄像头跟踪包含三大组成部分:基于图片的再识别、单摄像头内的多目标跟
[汽车电子]
真正的天网:英伟达推出首个跨摄像头汽车<font color='red'>跟踪</font>数据集
跟踪负载拉移方法的演进
 放大器设计师一直都喜欢用负载拉移系统功能为所选晶体管开发阻抗匹配网络。在线性系统中,简单地把小信号输入阻抗的复共轭用作源匹配网络、把小信号输出阻抗的复共轭用作负载匹配网络就可以了。但针对功率器件和它们的非线性特性,负载拉移系统可以提供必要的信息最大限度地提高宽频率范围内的功率转移和输出功率。   负载拉移技术需要研究有源器件(比如功率晶体管)对源和负载阻抗变化的响应。负载拉移系统提供了改变阻抗的途径,还能针对最佳大信号条件表征器件。谐波负载拉移技术是基频负载拉移测量的扩展,用于研究待测器件(DUT)在负载阻抗ZL与基准测试频率和一个或多个基频谐波频率组合方面的响应性能。这种方法经常用来提高高压缩放大器的效率,或降低工作在功率回
[工业控制]
<font color='red'>跟踪</font>负载拉移方法的演进
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多开源项目推荐

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved