全球半导体技术发展路线图

2014-05-15 07:10:38来源: 中国经济网 关键字:半导体技术  路线图
   
一、半导体产业生态环境

  半导体产业诞生于上世纪70年代,当时主要受两大因素驱动:一是为计算机行业提供更符合成本效益的存储器;二是为满足企业开发具备特定功能的新产品而快速生产的专用集成电路。

  到了80年代,系统规范牢牢地掌握在系统集成商手中。存储器件每3年更新一次半导体技术,并随即被逻辑器件制造商采用。

  在90年代,逻辑器件集成电路制造商加速引进新技术,以每2年一代的速度更新,紧跟在内存厂商之后。技术进步和产品性能增强之间不寻常的强相关性,使得相当一部分系统性能和利润的控制权转至集成电路(IC)制造商中。他们利用这种力量的新平衡,使整个半导体行业收入在此期间年均增速达到17%。

  21世纪的前十年,半导体行业全新的生态环境已经形成:

  一是每2年更新一代的半导体技术,导致集成电路和数以百万计的晶体管得以高效率、低成本地生产,从而在一个芯片上或同一封装中,可以以较低的成本整合极为复杂的系统。此外,封装技术的进步使得我们可以在同一封装中放置多个芯片。这类器件被定义为系统级芯片(system on chip,SOC)和系统级封装(system in package, SIP)。

  二是集成电路晶圆代工商能够重新以非常有吸引力的成本提供“新一代专用集成电路”,这催生出一个非常有利可图的行业——集成电路设计

  三是集成电路高端设备的进步带动了相邻技术领域的发展,大大降低了平板显示器、微机电系统传感器、无线电设备和无源器件等设备的成本。在此条件下,系统集成商再次控制了系统设计和产品集成。

  四是互联网应用和移动智能终端的崛起,带动了光纤电缆的广泛部署和多种无线技术的发展,实现前所未有的全球移动互联。这个生态系统创造了“物联网”这一新兴的市场,而创新的产品制造商、电信公司、数据和信息分销商以及内容提供商正在争夺该市场的主导权。

  半导体是上述所有应用的基石,所有的创新离不开半导体产业的支持。

  二、全球半导体技术发展路线

  上世纪60年代后期,硅栅自对准工艺的发明奠定了半导体规格的根基。摩尔1965年提出的晶体管每两年一次的更新换代的“摩尔定律”,以及丹纳德1975年提出的“丹纳德定律”,促进了半导体产业的成长,一直到21世纪初,这是传统几何尺寸的按比例缩小(Classical Geometrically Driven Scaling)时代。进入等效按比例缩小(Equivalent Scaling)时代的基础是应变硅、高介电金属闸极、多栅晶体管、化合物半导体等技术,这些技术的实现支持了过去十年半导体产业的发展,并将持续支持未来产业的发展。

  (一)器件

  信息处理技术正在推动半导体产业进入更宽广的应用领域,器件成本和性能将继续与互补金属氧化物半导体(Complementary Metal-Oxide-Semiconductor Transistor, CMOS)的维度和功能扩展密切相关。

  应变硅、高介电金属闸极、多栅晶体管现已广泛应用于集成电路的制造,进一步提升器件性能的重点将在III-V族元素材料和锗。与硅器件相比,这些材料将使器件具有更高的迁移率。为了利用完善的硅平台的优势,预计新的高迁移率材料将在硅基质上外延附生。

  2D Scaling最终将在2013国际半导体技术路线图(ITRS)期间达到其基本限制,无论是逻辑器件还是存储器件正在探索如何使用垂直维度(3D)。3D设备架构和低功率器件的结合将开启“3D 能耗规模化(Power Scaling)”时代,单位面积上晶体管数量的增加将最终通过多层堆叠晶体管来实现。

  遗憾的是,互连方面没有新的突破,因为尚无可行的材料具有比铜更低的电阻率。然而,处理碳纳米管、石墨烯组合物等无边包裹材料(edgeless wrapped materials)方面的进展为“弹道导体”(ballistic conductor)的发展提供基础保障,这可能将在未来十年内出现。

  多芯片的三维封装对于减少互联电阻提供了可能的途径,主要是通过增加导线截面(垂直)和减少每个互连路径的长度。

  然而,CMOS或目前正在研究的等效装置(equivalent device)的横向维度扩展最终将达到极限。未来半导体产品新机会在于:一是通过新技术的异构集成,扩展CMOS平台的功能;二是开发支持新一代信息处理范式的设备。

  (二)系统集成

  系统集成已从以数据运算、个人电脑为中心的模式转变为高度多样化的移动通信模式。集成电路设计正从以性能驱动为目标向以低耗驱动为目标转变,使得多种技术在有限空间内(如GPS、电话、平板电脑、手机等)可以异构集成,从而彻底改变了半导体产业。简言之,过去,性能是独一无二的目标;而今,最小化功耗的目标引领集成电路设计。

  系统级芯片和系统级封装的产品已成为半导体产业的主要驱动力。过去的几年,智能手机和平板电脑的产量已经超过微处理器的产量。异构集成的基础依赖于“延伸摩尔”(More Moore, MM)设备与“超越摩尔”(More than Moore, MtM)元素的集成。

  举例来说,目前,微机电系统(MEMS)设备被集成到汽车、视频投影仪、平板电脑、智能手机和游戏平台等各种类型系统中。一般情况下,MEMS设备为系统添加了有用的功能,增强系统的核心功能。例如,智能手机上的MEMS加速度计可检测手机的垂直方向,并旋转图像显示在屏幕上。通过MEMS引入的附加功能改善了用户界面,但手机没有它仍然可以运行。相比之下,如果没有MEMS设备,基于数字光投影技术(digital light projector, DLP)的录像机和喷墨打印机将无法正常工作。多模传感技术也已成为移动设备的组成部分,成为物联网的关键推动力量。

  数字型数据(digital data)和连接技术的迅速进步为医疗服务带来变革。硅、微机电系统和光学传感技术正在使这一革命成为可能。

  移动手机已经可以提供大量的健康信息。加速度计可以跟踪运动和睡眠,当用户触摸手机时,内置光传感器可以感知心脏速率。在手机的摄像头可以被用于不同的目的,比如检查食品的卡路里含量,或基于人脸表情识别自己的情绪。广泛的手机应用已经发展到能够分析这些数据,并用易于理解和操作的方式反馈给消费者。

  综观未来7-15年(到2020年以后)设备和系统的发展,基于全新原理的设备将支持全新的架构。例如,自旋波设备(spin wave device, SWD)是一种磁逻辑器件,利用集体旋转振荡(自旋波)进行信息传输和处理。自旋波设备将输入电压信号转换成的自旋波,计算自旋波,将自旋波输出转换成电压信号。在一个单核心结构中,对多重频率的大规模并行数据处理能通过开辟每个频率为不同的信息通道,以非常低的功率来进行。此外,一些新设备推动新架构的创造。例如,存储级存储器(storage-class memory,SCM)是一种结合固态存储器(高性能和鲁棒性)、归档功能和常规硬盘磁存储的低成本优点的设备。这样一个设备需要一个非易失性存储器(nonvolatile memory,NVM)技术,能以一个非常低的成本制造每比特储存空间。


(三)制造

  受维度扩展的驱动,集成电路制造的精度将在未来15年内达到几纳米级别。运用任何技术测量晶片上的物理特性已经变得越来越困难,通过关联工艺参数和设备参数将基本实现这个任务。通过控制设备稳定性和工艺重现性,对特征尺寸等过程参数的精确控制已经能够完成。

  晶圆厂正在持续地受数据驱动,数据量、通信速度、数据质量、可用性等方面的要求被理解和量化。晶圆片由300毫米向450毫米转型面临挑战。应着眼于对300毫米和450毫米共性技术的开发,450毫米技术的晶圆厂将因适用300毫米晶圆片的改进技术而受益。

  系统级芯片和系统级封装集成将持续升温。集成度的提高推动测试解决方案的重新整合,以保持测试成本和产品质量规格。优化的测试解决方案可能需要访问和测试嵌入式模块和内核。提供用于多芯片封装的高品质晶粒的已知好芯片(KGD)技术也变得非常重要,并成为测试技术和成本折中的重要部分。

  三、重大挑战

  (一)短期挑战(现在到2020年):性能提升

  1、逻辑器件

  平面型互补金属氧化物半导体(CMOS)的传统扩展路径将面临性能和功耗方面的严峻挑战。

  尽管有高介电金属闸极(high-k/metalgate,HKMG)的引入,等效栅氧化层厚度(equivalent gate oxide thickness,EOT)的减少在短期内仍具有挑战性。高介电材料集成,同时限制由于带隙变窄导致的栅极隧穿电流增加,也将面临挑战。完整的栅极堆叠材料系统需要优化,以获取最佳的器件特性(功率和性能)和降低成本

  新器件结构,如多栅金属氧化物半导体场效应晶体管(MOSFETs)和超薄全耗尽型绝缘层上硅(FD-SOI)将出现,一个极具挑战性的问题是这些超薄金属氧化物半导体场效应晶体管(MOSFETs)的厚度控制。解决这些问题应与电路设计和系统架构的改进并行进行。

  一些高迁移率材料,如锗和III-V族元素已被认为是对CMOS逻辑应用中硅通道的升级或替换。具有低体陷阱和低电能漏损,非钉扎费米能级(unpinned Fermi level)、低欧姆接触电阻的高介电金属栅极介质是面临的主要挑战。

  2、存储器件

  动态随机存取存储器(DRAM)的挑战在于,在特征尺寸减少、高介电介质应用、低漏电存取器件设计,以及用于位线和字线的低电阻率材料条件下,具有合适的存储电容。为了增加位元密度和降低
[1] [2]

关键字:半导体技术  路线图

编辑:北极风 引用地址:http://www.eeworld.com.cn/xfdz/2014/0515/article_33282.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:Canalys:第一季度智能机排行榜,小米跃居全球第六
下一篇:浦东科投对锐迪科5月8日公告的回应

论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
半导体技术
路线图

小广播

独家专题更多

2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved