高性能VGA芯片AD8367原理及应用

2007-03-09 19:03:27来源: 互联网
摘要:AD8367是AD公司推出的新型VGA芯片,该芯片采用单端输入、单端输出方式,可在500MHz以下的任意频率下稳定工作。文中介绍了AD8367的特点、工作原理及使用注意事项,并在此基础上给出了几种典型应用电路。 关键词:VGA;AGC ;AD8367 1 主要特点 AD8367是AD公司推出的一款可变增益单端IF放大器,它使用AD公司先进的X-AMP结构,具有优异的增益控制特性。由于在片上集成了律方根检波器,因此,它也是全球首枚可以实现单片闭环AGC的VGA的芯片。该芯片带有可控制线性增益的高性能45dB可变增益放大器,并可以在任意低频到500MHz的频率范围内稳定工作。 AD8367具有以下主要特点: ●单端输入、单端输出; ●输入阻抗为200Ω、输出阻抗为50Ω; ●3dB带宽为500MHz; ●输入端为零电平时,输出端电平为电源电压的一半,且可调; ●具有增益控制特性选择和功耗关断控制功能; ●片上集成了律方根检波器,可以实现单片AGC应用; ●增益控制特性以dB成线性; ●可以通过外部电容将工作频率扩展到任意低频。 2 工作原理 AD8367的功能框图如图1所示,该芯片主要由可变衰减器、固定增益放大器和律方根检波器组成。它的输入级是总衰减量为45dB的可变衰减器,其中包含一个200Ω单端梯形电阻网络和一个高斯内插器。该电阻网络由每级衰减量为5dB的9级衰减网络组成,并可由高斯内插器选择衰减因子,每级梯形网络以固定的分贝数衰减输入信号。当衰减量不是5dB的整数倍时,在控制电压的作用下,相邻两个衰减节点均会导通,通过离散节点衰减的加权平均值来获得与控制电压相对应的衰减量,并以这种方式获得平滑、单调的衰减特性。它在大于40dB的增益控制范围内,工作频率为200MHz时,可提供优于%26;#177;0.5dB的线性误差,而在400MHz时可提供优于%26;#177;1dB的线性误差。 紧跟衰减器的是固定增益放大器,该放大器主要用于保证AD8367具有42.5dB的增益和500MHz的带宽,它实际上是一个具有100 GHz增益带宽积运算放大器,因此,当其工作在高频时,仍具有良好的线性度。 AD8367在输出端集成了一个律方根检波器,可检测输出信号电平并与内部设置的354mVrms电平(对应于1Vp-p的正弦波)相比较。当输出电平超过内部设置电平时,将产生一个差值电流。用接在DETO脚和地之间的外部电容CAGC(包括5pF的内建电容)对该电流进行积分可产生与接收信号强度成比例的RSSI电压,这样,在AGC应用时,该电压可以用作AGC控制电压。 AD8367最适合工作在200Ω阻抗系统,并可通过电阻或电抗无源网络来实现与其它通用阻抗系统(从射频系统的50Ω到数据转换器的1kΩ)的转换。一般情况下,转换网络的设计选择取决于特殊的系统要求,如带宽、回损、噪声系数和绝对增益范围等。 AD8367内含无源可变衰减器和固定增益放大器,其电路噪声和失真性能均是增益和控制电压的函数,且输入折合噪声随衰减量成比例增加。电路在最大增益时具有最小为7.5 dB的噪声系数,增益每降低1dB,噪声系数增加1dB。在接收系统中,如果接收到的信号很弱,则会有最大增益和最小噪声系数;而当接收到的信号电平较高时,系统将具有较低的增益和较大的噪声系数。因此,电路噪声系数随增益的变化不会对系统造成明显的影响。电路的失真性能与噪声性能相类似。当AD8367工作在200Ω源阻抗系统时,它的输出级是一个低输出阻抗电压缓冲器,此时具有50Ω阻尼电阻,可以降低对负载电抗和寄生参数的敏感性。 3 典型应用 3.1 通用VGA放大器 AD8367是一款通用型VGA放大器,适合于大控制范围的压控增益应用。由于其具有从任意低频到500 MHz的工作带宽,它不但可以处理高达500MHz的高频信号,而且可以通过频率扩展来适应音频系统。图2所示是AD8367在VGA工作时的基本连接电路。图2中,电路增益AV与控制电压VGAIN成正比。由于AD8367的增益控制率为50dB/V,所以,在VGAIN以V为单位时,电路增益AV可由下式计算: AV=50VGAIN-5 当电路的线性增益控制范围为-2.5dB~42.5dB时,从上式可以推算出VGAIN所对应的取值范围为50mV~950mV。 将电容器CHP 连接到抵消信号路径dc平衡变化的内部漂移控制环,可设置信号通道的高通截止频率。在不使用该电容时,可由内部电容提供一个500kHz的缺省高通截止频率。CHP与高通截止频率的关系式为: fHP=10/(CHP+0.02) 式中,fHP的单位为kHz,CHP的单位为nF。这样,只要增大CHP的值就可以将AD8367扩展应用到音频领域。 3.2 用作AGC放大器 利用内部集成的精确律方根检波器,AD8367可以方便地配置成单片AGC放大器,其基本连接如图3所示。AD8367用作AGC放大器时,需选择反向增益控制模式。当输出信号的有效值超过354mV时,检波器将以20mV/dB的比例从DETO端输出与输入信号成比例的RSSI电压。将该RSSI电压作为AGC控制电压加到增益控制端GAIN,便可构成控制率为20mV/dB的简单单片AGC放大器。当使用低于5V电源时,检波器的输出起点和比例都不会发生变化,即电源电压在2.7V~5.5V的范围内变化时,电路的AGC特性能够保持不变。 按图3的连接方式,在大于35 dB的输入范围内可以获得优于0.1dB的控制线性度。电路的时间常数τAGC可简单地由AGC电容CAGC设定。事实上,τAGC是由AGC电容CAGC和10kΩ的片上等效电阻RAGC共同作用的结果。所以,时间常数如下: τAGC=RAGCCAGC 需要说明的是:采用误差积分技术的AGC环存在一个共同的弱点,当用一个逐渐增大的信号驱动时,AGC控制电压增加会降低增益。当增益降低到它的最低值后,与输入成比例的控制电压增加将对增益不产生影响,因而将造成输入过载。实际上,用AD8367配置成的AGC放大器也存在输入过载的问题。由于它的最小增益为-2.5dB,因此,输入幅度超过起控点2.5dB以上的输入都会造成过载,也就是说,输入信号功率超过+6.5dBm均会造成输入过载。因此,实际使用时,最好将最大输入电平控制在低于过载电平5dB处,以形成一定的过载保护带。 在AGC应用时,同样可以通过频带扩展应用到音频领域,当CHP高至1μF时,电路便可处理频率低至10Hz的音频信号。将图2中的CHP、C4、CAGC的取值改为1μF后即可构成一款高稳定、低失真的音频稳幅电路。 当需要的AGC起控点不同于电路内部的设定值时,应使用外部检波器。利用输出端检出的直流电平经放大、分压后加到增益控制端,便可获得需要的AGC起控点。 3.3 信号功率检测应用 使用律方根检波器的另一个好处是其输出作为RSSI电压来反映信号功率,从而实现任何给定源阻抗的绝对功率测量。因此,AD8367还可以作为功率检测芯片来设计功率计,或者作为以分贝数读出的ac电压计。其功率检测范围为45dB。如不使用图2中的增益控制,从DETO端输出的RSSI电压便可作为输入信号功率的检测电压。在用于输入信号功率检测时,只有当输出信号电平达到354mVrms时才有指示电压输出。

关键字:芯片  原理  应用

编辑: 引用地址:http://www.eeworld.com.cn/xfdz/2007/0309/2891.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
芯片
原理
应用

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved