基于MPC8560的吉比特以太网接口设计

2007-03-09 19:03:27来源: 互联网
随着网络技术的发展,网络通信控制器的应用已经越来越广泛。集成PowerPC微处理器的MPC8560 PowerQUICC Ⅲ作为一个多用途、高性能的通信微处理器,具有非常灵活的一体化单元系统和外围通信控制器,能被广泛运用于通信和网络系统,是目前为电信和网络市场而设计的最先进的集成通信微处理器之一。它集成了丰富的网络和通信外围设备,提供了更大的灵活性、扩展能力和更高的集成度。 MPC8560简介 MPC8560内部集成了两个处理模块:一个高性能嵌入式PowerPC e500内核和一个通信处理模块(CPM)。此外,该芯片还提供了片内缓存、DDR控制器、可编程中断控制器、通用I/O口、DMA和I2C等多种接口控制器。 与使用较多的MPC8260最大的不同是,MPC8560增加了两个三速以太网控制器(Three-Speed Ethernet Controller,TSEC),实现了10Mb/s、100Mb/s和1Gb/s三种不同速度的以太网协议接口控制。本文将主要讨论如何使用这两个TSEC实现吉比特以太网接口。 吉比特以太网物理层协议及接口 参考文献上对于网络协议的介绍往往局限于对协议分层的理论分析,对网络协议尤其是吉比特以太网协议在实际应用中的接口讨论较少,本文将对吉比特以太网协议在应用中的接口作总结性的介绍。 吉比特以太网协议的数据链路层与传统的10/100Mb/s以太网协议相同,但物理层有所不同。三种协议与OSI七层模型的对应关系如图1所示。 图1 三种以太网协议与OSI模型的对应关系 从图1可以看出,吉比特以太网协议与10/100Mb/s以太网协议的差别仅仅在于物理层。图中的PHY表示实现物理层协议的芯片;协调子层(Reconciliation sublayer)用于实现指令转换;MII(介质无关接口)/GMII(吉比特介质无关接口)是物理层芯片与实现上层协议的芯片的接口;MDI(介质相关接口)是物理层芯片与物理介质的接口;PCS、PMA和PMD则分别表示实现物理层协议的各子层。在实际应用系统中,这些子层的操作细节将全部由PHY芯片实现,只需对MII和MDI接口进行设计与操作即可。 吉比特以太网的物理层接口标准主要有四种:GMII、RGMII(Reduced GMII)、TBI(Ten-Bit Interface)和RTBI(Reduced TBI)。GMII是标准的吉比特以太网接口,它位于MAC层与物理层之间。对于TBI接口,图1中PCS子层的功能将由MAC层芯片实现,在降低PHY芯片复杂度的同时,控制线也比GMII接口少。RGMII和RTBI两种接口使每根数据线上的传输速率加倍,数据线数目减半。 由此可见,使用TBI接口来实现吉比特以太网接口所用的控制线和数据线比GMII接口少,因此设计与使用相对容易。虽然TBI接口比RTBI接口的数据线多,但是每根数据线上的传输速率可以低一倍,大大降低了PCB布板的难度。因此,相对其他方式,使用TBI接口实现起来最简单,难度最低。此外,TBI接口的PHY芯片比GMII接口的PHY芯片成本低很多。对于同时提供GMII和TBI两种接口的芯片,推荐使用TBI接口设计方案。 MPC8560与PHY芯片的接口设计 MPC8560对四种不同的接口标准都提供了支持,本文仅讨论TBI接口。 TLK2201芯片是支持TBI和RTBI两种接口的单信道吉比特以太网络收发器。它是业界第一批符合802.3规格的2.5V器件,无须任何外接电容,这可以节省电路板面积,减少零件的数目,从而降低产品的成本。此外,该芯片的功耗也相当低。 图2 MPC8560与TLK2201的接口设计 MPC8560与TLK2201的连接如图2所示。需要注意的是,TD0~TD9和RD0~RD9并不全是数据线。TD8对应Tx_ER,作为发送出错标志位;TD9对应Tx_EN,作为发送使能位;RD8对应Rx_DV,作为接收数据有效位;RD9对应Rx_ER,作为接收差错检测位。 此外还应注意到,图中使用的是SFP(可插拔)光模块,这是因为TLK2201只提供了光模块吉比特以太网接口。 对TSEC控制器的初始化 MPC8560对TSEC控制器的初始化过程如下。只要按照顺序逐一完成相应的步骤,即可正确配置TSEC的吉比特网络接口。 设置MACCFG1寄存器,对MAC进行软复位; 清除MACCFG1寄存器的软复位; 设置MACCFG2寄存器,选择TSEC工作模式(如全双工或半双工、CRC校验是否使能等); 初始化寄存器ECNTRL,设置接口为TBI标准; 设置MAC地址、物理地址; 设置MII口的速率,使用MDIO对PHY进行初始化; 清除并设置中断相关的寄存器IEVENT和IMASK; 设置Hash表和Hash寄存器; 初始化接收控制寄存器RCTRL; 设置DMA控制寄存器DMATRL; 设置接收缓冲区大小; 设置收发缓冲描述符(Buffer Descriptor,BD); 设置MACCFG1中的收发使能位,完成TSEC初始化。 在初始化TSEC的过程中尤其要注意在设置寄存器后,控制器处于不稳定状态,不能马上执行下一步的操作,需要作一定的延迟等待。通常,可以读取相应的状态寄存器以判断是否可以继续下一步,也可以使用某些操作系统提供的定时延迟来完成,如VxWorks中的taskDelay()。 测试及其结果 为了测试设计好的吉比特以太网接口的性能,将吉比特以太网接口与专门测试网络接口性能的仪器SmartBits相连。一个最为简单的测试方法是使用SmartBits发送数据包到MPC8560的吉比特以太网接口,MPC8560接到数据包后,将数据直接返还给SmartBits。SmartBits将会统计并显示测试结果。 图3 吉比特以太网接口测试结果 测试结果如图3所示,传输速率(Rates)可以达到1Gb/s左右,而且还略有裕量。 为了测试吉比特以太网接口更为全面的性能,需要对不同大小的数据包、突发大量数据流等进行测试,限于篇幅,不再讨论具体的测试细节。 设计中的注意事项 由于数据线上的传输速率相对较高,硬件部分的设计需要注意以下几点。 TBI接口每根数据线的传输速率是125Mb/s,为了保证采样与信号的同步,接收信号线RD0~RD9的长度和接收时钟线RxCLK必须等长。同理,发送信号线TD0~TD9的长度和发送时钟线TxCLK也必须等长。 为了保证阻抗匹配,TBI接口所有信号线的阻抗必须控制在50Ω%26;#177;5%。 光模块的输入信号是高速差分信号,设计时应该注意接收与发送的两对差分信号线必须等长。同时,差分阻抗需要控制在100Ω%26;#177;5%,以保证阻抗匹配。 为了保证电源干净,TLK2201的PLL电源输入端必须加滤波器。 驱动软件部分的设计需要注意以下几点。 GE端口收发对于软件处理能力要求较高,需要仔细设计收发缓冲区的深度,合理调度收发处理程序,保证数据收发性能。 对于BD表的维护,需要正确维护BD读写指针和BD的状态标志位,以避免缓冲区重叠和溢出。尤其应注意BD读写指针需要根据收发缓冲区的大小,在合适位置进行循环。 如果设置了PHY使用自协商(auto-negotiation)方式,一定要在自协商方式正常工作后,才能设置TSEC是否使用全双工或半双工模式。

关键字:吉比特  吉比特以太网  比特  以太网

编辑: 引用地址:http://www.eeworld.com.cn/wltx/qtjs/200703/2574.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
吉比特
吉比特以太网
比特
以太网

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved