低功耗接收机中频子系统芯片AD607

2006-05-07 15:50:06来源: 国外电子元器件

AD607为3V低功耗接收机中频子系统芯片,带有自动增益控制(AGC)的接收信号强度指示(RSSI)功能。该器件可用于GSM,CDMA,TDMA和TETRA等通信系统的接收机、卫星终端和便携式通信设备中。文中介绍了AD607的原理、特点与性能参数,并重点介绍了应用设计中的几个问题和典型应用电路。

功耗接收机中频子系统,其输入频率高达50MHz,IF范围为400kHz到12MHz。该芯片包含了一个混频器中频放大器、IQ解调器、锁相正交振荡器、AGC检测器和一个偏置系统。

    AD607的低噪声高内插混频器使用双平衡形式的Gilbert类型的单元。AD607的混频器单元还包含一个本地振荡器预放大器,它使得本振输入电平可低至-16dBm。

    增益控制端可作为手调增益控制的输入(MGC),或自动增益控制(AGC)的RSSI输出。在MGC方式时,AD607从外部的AGC检测器或DAC中得到外部增益控制电压。在AGC方式时,芯片内的检测器和外部的来自AGC环路的平均电容使得IF输出可保持在±300mV。这样电容上的电压足以提供RSSI输出。

    I路的解调器和Q路的解调器提供了正交基带输出,可与AD7013(IS54,TRTRA,MAST)或AD7015(GSM)等基带转换器接口。与中频保持相锁定的正交VCO驱动I和Q解调器。当AD607的正交VCO与输入信号保持相位锁定时,I和Q解调器还可解调AM信号。该VCO还可与外部的拍频振荡器保持相位锁定,这时解调器用作CW或SSB接收的乘积检测器。AD607还可用于解调BPSK信号,这时外部的Costas环路用于载波恢复。

    AD607的主要特点如下:

    ●集成了完整的接收机,具有-15dBm到1dB的压缩点和-8dBm输入三阶内插点(IP3)以及500MHz的RF和LO带宽。

    ●线性中频放大器,带有RSSI输出的MGC或AGC;

    ●正交解调器可用于锁相正交振荡器,可对400kHz到12MHz的中频信号进行解调,并可解调AM、CW和SSB信号;

    ●低功耗:3V电源时功耗为25mW,具有与CMOS兼容的低功耗控制;

    ●可与基带转换器AD7013和AD7015接口;

管 脚 名称缩写 名  称 描   述
1 FDIN 频率检测器输入 IQ解调器正交振荡器的PLL输入端,为来自外部振荡器的±400mV电平,偏置为Vp/2
2 COM1 公共端1号 射频前端和主偏置的电源公共端
3 PRUP Power-up控制输入 3V/5V兼容的功耗控制端,逻辑1对应高功耗,最大输入电平=VPS1=VPS2
4 LQIP 本振输入 交流耦合本振输入
5 RFLO RF低输入端 通常连接到交流地
6 RFHI RF高输入端 交流耦合的射频输入,最大电平±54mV
7 GREF 增益参考输入 阻抗输入,通常为1.5V,用于设定增益
8 MXOP 混频器输出 高阻抗,单边电流输出,最大输出电流为±6mA(最大输出电压±1.3V)
9 VMID 电源中点偏置电压 电源中点偏置产生器的输出端(VMID=CPOS/2)
10 IFHI IF高输入 交流耦合中频输入,最大电平±54mV
11 IFLO IF低输入 IF输入的参考点
12 GAIN/RSSI 增益控制输入/RSSI输出 高阻抗输出,使用3V电源时输出为0~2V,使用内部的AGC检测器时可提供RSSI输出,RSSI电压为连接该端的AGC电容两端的电压
13 COM2 公共端2号 IF级和解调器的电源公共端
14 IFOP IF输出 低阻抗单边电压输出,最大+5dBm
15 DMIP 解调器输入 到I和Q解调器的输入,在IF>3MHz时,最大输入为±150mV,在IF<3MHz时,最大输入为±75mV
16 VPS2 VOPS电源2号 高电平IF,PLL和解调器的电源
17 QOUT 正交输出 低阻抗Q路基带输出,采用交流耦合,20kΩ负载时的满幅输出为±1.23V
18 IOUT 同相输出 低阻抗I路基带输出,采用交流耦合,20kΩ负载时的满幅输出为±1.23V
19 FLTR PLL环路滤波 串联RC PLL环路滤波,连接到地
20 VPS1 VPOS电源1号 到混频器,低电平IF、PLL和增益控制的电源

    ●AD607可广泛用于GSM,CDMA,TDMA和TETRA接收机、卫星终端和电池供电的通信设备。

2 引脚说明与极限参数

2.1 引脚说明

    AD607采用20脚SSOP封装,封装外形图如图1所示。表1所列为其引脚功能描述。

2.2 极限参数

    ●电源电压:VPS1、VPS2:5.5V;

    ●内部功耗:600mW;

    ●工作温度范围:(采用2.7V~5.5V电源时)-25℃~+85℃;工作温度范围(采用4.5V~5.5V电源时)-40℃~+85℃;

    ●存储温度范围:+65℃~+150℃;

    ●引脚温度(焊接60秒):300℃

3 工作原理

    AD607提供了实现完整的低功耗,单变频接收机或双变频接收机所需的大部分电路,其输入频率最大为500MHz,中频输入为400kHz到12MHz。内部I/Q解调器和相应的锁相环路可提供载波恢复,并支持多种调制模式,包括n-PSK,n-QAM和AM。在中等增益时,使用3V的单电源(最小2.7V,最大5.5V)的典型电流消耗为8.5mA。

    图2所示为AD607的功能框图它包含了一个可变增益UHF混频器和线性四级IF放大器,可提供的电压控制增益范围大于90bB。混频级后是双解调器,各包含一个乘法器,后接一个双极点2MHz的低通滤波器,由一锁相环路驱动,该锁相环路同时提供同相和正交时钟。芯片还包含有内部的AGC检测器,温度稳定增益控制系统用于提供准确的RSSI输出。另外,AD607芯片还具有与CMOS兼容的功耗控制偏置系统。

3.1 混频器

    UHF混频器采用改进型的Gilbert类型单元设计,可在低频到500MHz的频率范围内工作。混频器输入端动态范围的高端由RFHI和RFLO间的最大输入信号电平确定,而低端则由噪声电平确定。

    混频器的射频输入端是差分的,因此RFLO端和RFHI端在功能上是完全相同的,这些节点在内部予以偏置,一般假定RFLO交流耦合到地。RF端口可建模为并联RC电路,如图3所示。

    MXOP端的最大可能电平由电压和电流限制共同决定。使用3V的电源和VMID=1.5V时,最大摆幅为±1.3V。为在负载为165Ω的标准滤波器中得到±1V的电压摆幅,需要的峰值驱动电流是±6mA。但是电压和电流的下限不应与混频器增益相混淆。在实际系统中,AGC电压将决定混频增益,从而决定IF输入端IFHI脚的信号电平,它总是小于±56mV,这是IF放大器的线性范围限制的结果。

3.2 RSSI的增益定标

    AD607的总增益以分贝表示时,相对于GAIN/RSSI端的AGC电压VG是线性的。当VG为零时,所有单元的增益为零。各级的增益是并行变化的。AD607内含增益定标的温度补偿电路。当增益由外部控制时,GAIN/RSSI端是MGC输入;当使用内部的AGC检测器时,GAIN/RSSI端是RSSI输出。

    增益控制定标因子正比于施加在脚GREF端的参考电压。当该脚连接到电源的中点时,标度是20mV/dB(VP=3V)。在这些条件下,增益的低80dB对应的控制电压为0.4V

    另外,GREF端还可连接到外部电压参考VR上,使用AD1582或AD1580作电压参考可以提供与电源无关的增益标度,当使用AD7013和AD7015基带转换器时,外部参考也可由基带转换器的参考输出提供,如图4所示。

4 设计与应用中的几个问题

    下面介绍AD607在设计与应用中的几个具体问题。

4.1 印制板设计

    正像所有的宽带高增益器件的应用设计一样同,AD607的印制板在设计时必须考虑特定的接地点的位置,以免耦合不需要的信号,特别是在I-FOP到RFHI或IFHI之间。

    AD607的高灵敏度会使无用的本地电磁信号对系统性能产生影响。在系统开发阶段,必须使用良好的屏蔽。最好的解决方法是使用一屏蔽盒将所有元件完全包装起来,并使用数量尽可能少的信号连接器(RF,LO,I和Q路)。

    在屏蔽盒中,I和Q输出脚可能包含小的串联电阻(大约100Ω),这在测试负载较轻时(如大于20kΩ的阻性负载和几个pF的电容)并不会对系统性能有明显影响。还有助于防止不需要的RF辐射进入屏蔽盒内部。

    在电源上应连接穿心电容,在电源引脚的内部和外部应使用磁阻。在靠近IC引脚处应使用两个不同值的电容对电源进行去耦。

4.2 使用内部的AGC检测器

    AD607在内部的中频放大器输出处有一个检测器单元,在不需要DSP支持的接收机应用中,该单元可为芯片自射提供AGC和输出电平调节功能。在AGIN端和地之间连接一滤波电容就可实现这一特性。该端上的电压可用作RSSI输出,其定标已在前面讨论过了。

4.3 AGC电容值的选取

    在增益调制比较麻烦的应用中,如将AGC电容从1nF升高至2.7nF;则80dB增益时的转换时间(20mV/dB)将接近1ms。

    在IF较低时,AGC电容应予以相应增加,以避免增益纹波。因此在455kHz的频率时要获得同样的纹波,电容应从1nF增加到0.022μF

    在AM应用中,AGC环路不应跟踪调制包络。在最低的调制频率(比如300Hz)时,增益变化量所引起的失真不应起过1%的THD失真。注意在AM应用中,AGC滤波电容是由调制带宽决定的,而不是由IF决定的。

4.4 其它

    在脚12和地之间不能放置电阻,因为这里的电阻会将积分器转换为低通滤波器。积分器为维持给定的输出不需要输入信号,而低通波波器需要。此“输入”是IFOP端增加的幅度信号。因此AGC环路不需调整IFOP端的输出电平。

5 典型应用电路

    图5所示为AD607的应用电路。中频和射频端口使用50Ω的电阻端接,以便与外部的本振和射频信号在宽频带实现匹配。中频滤波器为10.7MHz,使用330Ω的输入和输出端接。

关键字:低功耗  接收  接收机  中频

编辑: 引用地址:http://www.eeworld.com.cn/wltx/qtjs/200605/2843.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
低功耗
接收
接收机
中频

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved