人工智能发展的不可回避的十大痛点

2018-06-07 20:22:26编辑:李强 关键字:人工智能

  从1956年的达特茅斯会议开始,标志人工智能技术正式诞生。人工智能经过三起三落,如今又一次的进入到了公众的视野。2016和2017年两年人工智能炒得很火,尤其是AlphaGo相继击败了李世石和柯洁。在围棋界,AlphaGo可以说是横行无忌,无人能敌。下面就随网络通信小编一起来了解一下相关内容吧。

  从AlphaGo开始,人工智能走入大众的视野。媒体竞相报道,将人工智能的热度炒到非常高的高度。如今人工智能虽然还是很热,但是热度已经被区块链夺了走。但是无论是世界上有能力的各个国家,还是国际上的有实力的科技巨头,都在布局人工智能领域,例如谷歌收购了与人工智能相关的十几家公司,其中就包括被谷歌收购了的研发了AlphaGo的DeepMind公司。

  无疑,人工智能未来必然是我们发展的方向,那么在人工智能发展的过程中有哪些痛点需要解决呢?Innov100平台分析认为有以下10个痛点。

  1.人才稀缺

  人工智能在人才方面极度稀缺。据领英数据显示,全球在人工领域的人才不足25万人,其中在美国的人才最多。其余主要分布在欧洲,印度,中国,加拿大等。其中有10年以上工作经验的不足30%。所以那个国家,企业想在人工智能领域做出成绩,首先就是人才的争夺。如最近中兴被美国制裁,引起对“国芯“的发问,首先出现的问题就是人才稀缺,人才的优秀程度,人才的聚集程度,决定了一个企业走向欣荣还是衰败。

  2.道德价值观判定

  当人工智能遇到伤害事件发生的时候应该如何抉择。

  例如无人驾驶如今也在如火如荼的发展。人工智能很有可能将首先应用到无人驾驶领域。但是在无人驾驶领域有时候会出现这样的情况,当无人驾驶汽车行走在道路上,正前方忽然冲出来一个人,左右两边也正好有人,无论车辆如何操作都无法避免的会造成伤害,那么这个时候人工智能该如何抉择。

  在计算机的世界,是一个概率的世界,如果正前方是老人,左右是小孩的话,是不是会分析小孩比老人更有价值,然后完成所有的最优解。但是这很明显是违背道德常识的。

  3.莫拉维克悖论

  人工智能,简单理解就是像人类一样的智能。那么人工智能所遵循的逻辑或者方法应该是类人类的才对。可是实际上人工智能与人类智能完全不同。

  莫拉维克悖论(Moravec'sparadox) 是由人工智能和机器人学者所发现的一个和常识相佐的现象。和传统假设不同,计算机完成人类所独有的高阶智慧能力只需要非常少的计算能力,例如推理。但是完成无意识的技能和直觉却需要极大的运算能力。这个理念是由汉斯·莫拉维克、布鲁克斯(Rodney Brooks)、马文·闵斯基等人于1980年代所阐释。

  4.算力限制

  目前进行人工智能算力平台的搭建,需要大量的CPU和GPU。而谷歌公司的AlphaGo使用的TPU,类似与GPU的一种算法芯片,能耗功效比非常高。训练AlphaGo需要的算力相当于我们市面上常见的消费级1080TI 大约12000块,至少千万级别的开支。

  对于谷歌,Facebook,腾讯等这样的巨头公司,这样的开销也许不算什么。但是对于一些规模较小的公司,这将是非常大的一个问题。毕竟人工智能想要步入成熟期,必须解决算力成本问题。

  5.隐私安全问题

  隐私安全问题在很多行业都是非常重要的话题,为什么说人工智能行业的隐私安全会成为制约他的痛点。

  因为如果要利用人工智能来提高人们的生活效率和品质,那么必须尽量多的获取个人信息,因为AI模型需要训练,所以很可能需要将个人信息上传到云端。另外,目前没有办法依靠本地的算力支撑人工智能。隐私与便利常常矛盾,但是人工智能如果想有好的发展,必须两者兼顾。

  最近,Facebook因为泄漏了多达8000万的用户信息,扎克伯格被美国政府要求出席美国国会听证会,并被询问的总时长达10小时。并在听证会中多次提到用人工智能来解决部分业务需求。

  6.需要大量的数据标记

  目前现有的AI模型都需要大量的数据标记,因为模型大多数是监督学习模型。大量的数据标记,不仅仅会要求更多的人力资源,同时人的参与难免会为数据带来一定程度的误差。

  目前可以很好解决这一问题是利用强化学习,进行无监督学习。谷歌公司的AlphaGo就是利用无监督学习进行训练的。

  7.数据稀缺

  AI模型不仅仅目前不仅需要进行人工对信息标记,同时也需要巨量数据才可以达到人类正确识别的程度。以AlphaGo为例,在击败李世石的那个版本AlphaGo进行了3000万次图谱学习。击败柯洁的那个版本,进行了400多万次,自我对弈。

  除了对数据量的需求极大,对数据的维度也要求尽可能的全面。总之就是,能有最好都给我,越全面越好。但是实际情况就是,结构性的全面的数据在现实生活中很难获得,而且也很难获得比较准确的数据。

  8.黑匣子问题

  在人工智能设计之初,赋予其相应的发展方向是,根据人为制定的规则和人为制造的逻辑执行相应的任务。但是实际发现这样的并没有办法使得人工智能有非常让人满意的实际应用。

  一直到如今非常热门深度学习,通过一定程度人为干预,AI模型经过数据训练和结果干预,会自己生成一个拟合算法,生成人类预期的结果。但是由于是AI模型自动生成,会存在不可解释的问题。如果有一天AI 模型得出或者做出出乎我们意料之外的事情,我们却没有能力来解释这个时间背后的原因。

  9.模型可移植性差

  AI模型的可用性是随着训练的数据量增大而增高。但是所需要的数据量是个非常大的量级,但即使是重复度很高的模型,也没有办法从上一个模型中获得其一些经验,只能自己从头开始训练。

  这样会带来一些问题,比如会增加数据获取成本,时间成本,能耗成本等,这将给发展中的企业带来极大的困扰。模型的可移植性差,势必影响技术的发展传播速度,也会增加传播成本,这对于一个需要快速发展的新兴科技,确实是一个非常重要的问题。

  10.可信任性

  这个一个复合的问题。AI模型在处理可评测结果的应用中可能表现非常出色,比如在图像识别领域,我们可以用一个确定的概率来评价AI模型的正确识别度,也可以说是可信任度是明确可见的。

  但是,如果在未来的应用场景中,需要AI模型提供一定的商业决策,或者给出一些建议。我们并没有很好的参照体系来评价AI模型的决策和建议是否是准确的,是否是最优解。这将影响决策的方向和准确,也会为很多商业人士带来不必要的困扰。

  目前,生活中已经有很多智能模型辅助决策了,但是这样的模型都是可以解释的,只对决策起到一定的参考作用。但是AI模型,我们是无法解释其得出结论的原因的,那么其可信任度将是一个无法逃避的问题。

  人工智能从概念诞生之起,到如今已经有60年的历史。如今其已经在一些领域开始发挥其重要的作用了,虽然有很多痛点有待解决,但是哪一个新技术从开始到成熟没有经历过各种问题。而且,人工智能未来的潜力十分巨大,相信未来可以有更好的发展和突破。

    以上是关于网络通信中-人工智能发展的不可回避的十大痛点的相关介绍,如果想要了解更多相关信息,请多多关注eeworld,eeworld电子工程将给大家提供更全、更详细、更新的资讯信息。

关键字:人工智能

来源: 电子产品世界 引用地址:http://www.eeworld.com.cn/wltx/article_2018060720894.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:英特尔将在2019年与Sprint联袂推出5G电脑
下一篇:云计算发展趋势分析 云服务器提供商有望持续受益

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

定义智能家居新标准,人工智能与场景也该进来了

两种表述的语意,定义中描述的,以及我们通常所指的都是智能家居这一住宅环境,既包括单个住宅中的智能家居,也包括在房地产小区中实施的基于智能小区平台的智能家居项目,如深圳红树西岸智能家居。第二种语意是指智能家居系统产品,是由智能家居厂商生产、满足智能家居集成所需的主要功能的产品,这类产品应通过集成安装方式完成,因此完整的智能家居系统产品应是包括了硬件产品、软件产品、集成与安装服务、售后在内的一个完整服务过程。  9年多过去了,由于物联网、移动互联网、云计算、人工智能技术的快速发展,已经或正在极大地改变智能家居产业,因此,智能家居的定义需要进行适当修订,千家智客创始人向忠宏为此专门召集智能家居业界专家,包括中国室内装饰
发表于 2018-07-22 11:20:15
定义智能家居新标准,人工智能与场景也该进来了

人工智能会替代多少人力劳动?

一双眼睛的局部细节图出现在电脑屏幕上,小慧对着放大的眼睛,一步步地做好标记点。 一眼望过去,一排排的电脑屏幕上,都是类似的画面。也许是因为窗帘的遮光效果太好,略显昏暗的办公环境加上电脑屏幕上被放大的各种物体细节,颇为惊悚。 在某人工智能研究院看到这一幕,不觉惊叹即使是头部的AI创业公司,最关键的一环依然是从数据标注员开始的。 而这是一群被称作第一批被AI累死的人。 AI的老师:画框的这些人伴随着AI兴起的最关键的技术莫过于深度学习,作为深度学习的基础,神经网络是一种以输入为导向的算法,其结果的准确性取决于接近“无穷”量级的数据。 所以摒除那些复杂的中间环节,深度学习最关键的就是需要
发表于 2018-07-20 19:27:04

机器人进入安防市场,底气何在?

从1920年捷克作家雷尔·恰佩克的科幻小说《罗萨姆的机器人万能公司》中的"robot"一词开始,机器人就从单纯的文字变成了现实。 在现实生活中,以服务机器人为代表的机器人穿梭在人类世界的各个角落里,逐渐成为人类生活中不可缺少的部分。但也正因为诞生于科幻小说之中,人们对机器人一直充满着幻想,从工业机器人到扫地机器人,再到教育机器人和快递机器人,人类的双手正在扶持一个新行业的诞生——安防机器人。 从安防机器人谈起安防机器人又称安保机器人,是机器人行业的一个细分领域之一。 和其它服务机器人类似,安防机器人内置摄像头,GPS技术,机器视觉和语音交互等人工智能技术。但光从称呼出发,我们就能了解安防机器人
发表于 2018-07-20 19:25:44

AI不稳定,就业有风险,所以要招本科生?

上个礼拜,北京航空航天大学主办了国内首届人工智能本科专业研讨会。会上清华大学、南京大学、西安交通大学等国内26所大学共同发布了《关于设置人工智能专业建议书》,呼吁尽快设置本科人工智能专业。 毫无疑问,这个高考季当中,人工智能已经成为了一个热门话题。伴随着知名高校的呼吁,我们还可以看到各个名牌大学的人工智能学院、人工智能研究院如雨后春笋一样成长起来。中国科学院、南京大学、清华大学,都已经在一年内成立了类似研究机构。 而政策层面,国家《新一代人工智能发展规划》中也明确提出要建设人工智能学科。人工智能要发展,需要人才和学术建设应该是毫无争议的问题。  但关于人工智能是不是要在今天就成为本科专业
发表于 2018-07-20 19:22:43
AI不稳定,就业有风险,所以要招本科生?

人工智能会导致经济危机?

理论上来说,人工智能的普及,会带给整个人类社会极大的冲击,包括但不限于会有大量人失业,并由此引发经济危机。 伴随着人类社会的不断发展,人类社会面临的挑战从怎样克服物资不足,正逐渐转变成如何合理分配我们生产出来丰富物资。如果人类可以处理好这个问题,那么人类就有可能进入共产主义社会,整个社会按需分配,人们不再需要争夺资源,因为资源过剩。但是,如果人工智能被别有用心的人利用,整个人类社会陷入一场浩劫,一场巨大的动荡也不是不可能。 但是不管人类最后怎么处理人工智能带来的生产力飞跃,现有的经济运行模式一定会出问题。在人工智能普及的过程中,或者初步完成普及之后必然会出现一个极其容易出现经济危机的阶段——生产过剩/产能过剩
发表于 2018-07-20 19:22:09

为什么说人工智能普及会造成经济危机?

理论上来说,人工智能的普及,会带给整个人类社会极大的冲击,包括但不限于会有大量人失业,并由此引发经济危机。 伴随着人类社会的不断发展,人类社会面临的挑战从怎样克服物资不足,正逐渐转变成如何合理分配我们生产出来丰富物资。如果人类可以处理好这个问题,那么人类就有可能进入共产主义社会,整个社会按需分配,人们不再需要争夺资源,因为资源过剩。但是,如果人工智能被别有用心的人利用,整个人类社会陷入一场浩劫,一场巨大的动荡也不是不可能。 但是不管人类最后怎么处理人工智能带来的生产力飞跃,现有的经济运行模式一定会出问题。在人工智能普及的过程中,或者初步完成普及之后必然会出现一个极其容易出现经济危机的阶段——生产过剩/产能过剩
发表于 2018-07-20 19:20:27

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved