无源RFID芯片MCRF250及其防冲突读写器设计

2007-03-09 19:03:27来源: 互联网
摘要:介绍Microchip公司生产的无源RFID芯片MCRF250的主要特点及其工作原理,详细讨论了MCRF250防冲突问题。并在此基础上给出了一种FSK防冲突读写器的设计方法。 关键词:RFID;MCRF250;FSK;防冲突;读写器 1 MCRF250简介 MCRF250是Microchip公司生产的非接触可编程无源RFID器件,工作频率(载波)为125kHz。该器件有两种工作模式:初始模式(Native)和读模式。所谓初始模式是指MCRF250具有一个未被编程的存储阵列,而且能够在非接触编程时提供一个缺损状态(其波特率为载波频率的128分频,调制方式为FSK,数据码为NRZ码);而读模式是指在接触和非接触方式编程后的永久工作模式,在该模式下, MCRF250芯片中的配置寄存器(详见后述)的锁存位CB12置1,芯片上电后,进入防冲突数据传送状态。 MCRF250 的主要性能如下: ●只读数据传送,片内带有一次性可编程(OTP)的96位或128位用户存储器(支持48位或64位协议)。 ●具有片上整流和稳压电路。 ●低功耗。 ●编码方式:NRZ,曼彻斯特码及差分曼彻斯特码。 ●调制方式:FSK,PSK,直接调制。 ●封装方式:PDIP,SOIC。 2 工作原理 2.1 芯片内部电路组成 MCRF250芯片内部电路框图及与读写器构成的应用系统如图1所示。芯片的引脚VA和VB外接电感L1和电容C1构成的谐振电路(谐振频率为125kHz, L1参考值为4.05mH,C1参考值为390pF)。读写器(Reader)侧的电路谐振于125kHz以用于输出射频能量,同时也用于接收MCRF250芯片以负载调制方式传来的数字信号。MCRF250芯片内部电路由射频前端、防冲突电路及存储器三部分组成。 2.2 射频前端电路 射频前端电路用于完成芯片所有的模拟信号处理和变换功能,包括电源(工作电压VDD和编程电压VPP)、时钟、载波中断检测、上电复位、负载调制等电路。此外,它还用来实现编码调制方式的逻辑控制。 2.3 配置寄存器 配置寄存器用于确定芯片的工作参数。配置寄存器也能以非接触方式编程,它由制造商在生产中进行编程。配置寄存器共有12位,其功能如图2所示。其中位11(CB11)总是为1。位10(CB10)用于设置PSK速率,置1时速率为fc/4,置0时速率为fc/2。当CB12为0时,表示存储阵列未被锁定;为1时表示成功地完成了接触编程或非接触编程,此时芯片工作于防冲突只读模式下。 2.4 防冲突电路 片内有防冲突电路,当发生冲突时,MCRF250可停止数据发送,并在防冲突电路的控制下,可再一次在适当的时候传送数据。这种功能保证了当读写器射频场中有多个RFID卡时,可以逐一读取。该防冲突措施要求读写器能提供载波信号中断的时隙(Gap)能力。 3 FSK防冲突读写器的电路设计 3.1 防冲突技术 ISO/IEC1444-3标准给出了TYPE A和TYPE B两种初始化和防冲突规范1:TYPE A采用面向比特的防冲突帧,支持比特冲突检测协议;TYPE B通过一组命令来管理防冲突过程,防冲突方案以时隙为基础。 存储卡的防冲突技术目前尚未形成统一的标准,很多厂家都拥有自己的专利。对于MCRF250芯片的读写器设计来说,其主要特点是具有防冲突能力,即读写器应具有提供Gap和冲突检测的能力。因为读写器提供Gap可保证时间上的同步,冲突检测可采用比特(位)冲突检测方法。 位冲突检测可以采用幅度变化、非法编码出现、位宽变化等检测技术。但在RFID中,很难确定判断幅度迭加的门限值(阈值),因此,非法编码判断和位宽检测是比较简便的方法。 非法编码判断和编码方式的相关资料可参见参考文献。下面主要介绍NRZ码和曼彻斯特码在发生冲突时合成波形的变化情况。从图3中可见,NRZ 码无法判断位0和位1的冲突,因为冲突后的结果可认为正常的数位1。而曼彻斯特编码的数位1,如果以速率高一倍的NRZ码10来表示,其数位0则可表示为01,其数位1和数位0冲突的结果则可表示为11,而曼彻斯特码中,11是非法编码,故而极易判断位冲突出现。TYPE A中就是采用了曼彻斯特编码。当然,图3所示情况是基于位时间同步和放大限幅的环境,在RFID中,这些都是可以做到的。 而位宽的变化则与调制方式有关。当采用NRZ码FSK调制时,发现位0和位1碰撞时,其合成波形的位宽有了比较明显的变化,图4所示是其碰撞情况时序图,图中数位0为fc/8,数位1为fc/10。 从图4可以看到,经过滤波放大整形电路后,若数位1和数位0产生碰撞,则碰撞冲突后的波形将出现7TC和12TC宽的脉冲,而正常情况下0的FSK脉宽为4TC,1的FSK脉宽为5TC,因此用计数器进行位宽检测,判别是否出现大于5TC的脉宽,就可以判断是否出现了冲突。 3.2 FSK防冲突读写器设计 读写器组成框图如图5所示。它由晶体振荡器(4MHz)、分频器、功率放大器、Gap产生电路、包络检波、放大滤波整形电路、FSK解调电路、冲突检测电路和微控制器组成。下面主要介绍防冲突流程及冲突检测电路。 MCRF250的防冲突流程图如图6所示。读写器开始送出Gap,其时间间隔(载波缺损时间)为60μs(误差不大于20%)。然后等待5个位宽时间,检测有无调制信号出现,若有调制信号出现,再判断是否发生冲突。如果无冲突出现,则读完该MCRF250芯片数据后,再按规定形成一个新的Gap,以进行下一次读取。 流程中的主要工作由微控制器程序实现。对于功率放大器电路,特别是D类功率放大器,由微控制器程序产生Gap,是很容易实现的。 根据图4所示的时序图,设计的冲突检测电路如图7所示。 放大滤波整形电路输出的FSK信号首先加至触发器D1(74HC74),触发器D1将于FSK信号的上升沿在Q端产生一个上跳变,但因 Q端和CL端连接,它会很快又回至低电平,即在Q端形成一个窄脉冲来触发一个单稳电路,该单稳电路的输出作为“有调制出现”信号加至微控制器(MCU)。此外,该脉冲同时还可加至FSK解调器使FSK解调器工作同时,输出NRZ码数据。 冲突检测电路由十进制计数器4017和单稳电路组成。4017的 Reset端接至触发器D1的Q端,触发器D1的Q端输出用于复位4017并使其开始计数。从图4可知,如果产生位碰撞,就会出现7TC和12TC的脉宽,因此将FSK信号加至4017的CLKen端,该端为低时,对125kHz时钟计数,当计数到7时,Q7端由低变高,触发单稳电路,单稳电路产生跳变(此即冲突出现信号),并告知MCU发生了冲突。在正常FSK信号情况下,FSK脉宽为4TC和5TC,因此Q7脚不会变高,即无位碰撞出现。该电路可实现位冲突检测。MCU输出的控制信号用于设置图7电路的初始状态。 4 结束语 防冲突技术是RFID中的一项重要技术,不同的芯片所采用的措施和方法会有所差异,因而需要仔细地进行分析和研究。

关键字:无源  rfid  芯片  冲突

编辑: 引用地址:http://www.eeworld.com.cn/wltx/RFID/200703/2094.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
无源
rfid
芯片
冲突

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved