CDMA上混频器解决方案

2006-05-07 15:50:14来源: 电子产品世界

    CDMA移动系统(MS)中的Tx链路系统框图示于图1。来自基带处理器MSM3000的基带信号由IFT3000(Qualcomm公司产品)调制为130MHz IF信号。此被调制的信号上变频到RF发射频率前必须由混频器进行频带限制。然后,激励器和功率放大器(PA进一步放大RF信号。

    在MS中,为了满足系统功率控制需要,在Tx链路中,必须达到85dB的动态范围(DR)。Tx链路中3个自动增益控制(AGC)放大器提供此动态范围。IFT3000有84dB的DR,此对应于控制电压范围0.2~2.3V。MRFIC1854中,两个AGC放大器总DR大约为64dB,其控制电压范围0.1~1.7V。基于功率控制算法(开环和闭环),MSM3000输出一个脉冲密度调制(PDM)控制信号来调节Tx增益。

    为了达到最佳性能,必须在3个AGC放大器之间合理地分配总Tx增益。IFT3000的增益太大,会导致低相邻信道的功率抑制(ACPR)问题,而太小的增益又会导致超量噪声问题。为了改善噪声性能,建议在上混频器前加进一个IF SAW滤波器。

    为达到较好的信噪比(SNR)和ACPR,IFT3000通常工用在DR的高输出功率区,这是因为SNR和ACPR随输出功率增加。为防止MRFIC1854中IF AGC放大器和上混频器的饱和,在上混频器前必须用(假若需要更多衰减)IF衰减器。

    然而,下面的因素会使增益控制问题变复杂化。首先,MSM3000基带处理器通常只有一个AGC控制器引脚可用,第二,IFT3000和MRFIC1854的AGC特性具有不同的增益斜率。这两点意味着3个AGC放大器不能被单独控制,即使对不同的AGC放大器用电平转换提供适当的控制电压范围。换言之,3个AGC电压是一一对应的。因此,任何一个AGC放大器中的任意增益容限会对预先设计的Tx增益产生不利影响。例如,在低增益上混频器中,IFT3000需要较强的驱动,这又导致ACPR问题(由于过激励上混频器)。因此,必须设计具有足够余量的衰减网络。

    第三,MRFIC1854设计用于整个动态范围,限制器件工作在AGC特性曲线的线性部分,可导致总Tx增益较大的变化。图2示出MRFIC1854的典型AGC特性曲线。很明显,在AGC特性曲线的中间大约有+8.0dB增益变化,在特性曲线的两端大约有+1.0dB增益变化。这提醒人们必须利用MRFIC1854的整个DR,使AGC环路自身动态地调节总Tx增益。限制MRFIC1854可用的AGC范围,可使低增益器件没有输出功率和放大饱和。为MRFIC1854设计的电平转换电路必须适用整个的AG范围,即0.1~1.7V。不要在任何一个AGC放大器的转换区加固定控制电压。否则会增大增益变化的影响。

    最后,MSM3000采用的TxAGC非线性补偿算法对TxAGC设计会产生另一限制,在这种平台中,Tx AGC特性曲线补线性化分为16个线性段(见图3),每段用线性方程y=mx+c表示,式中m代表斜率、C是每段的补偿。从Tx功率定标中得到m(7位)和C(9位)值,并把这些值存储在MSM3000的RAS_RAM 16个16位字中。6位输入的x范围是0/64~63/64,最后所得到的AGC控制(Tx_AGC_ADJ)是9位PDM信号。这表示在整个AGC DR中最后有512个增益步。必须仔细选择增益斜率。这16个线性化线段补偿AGC特性中的任意非线性,以产生净线性AGC放大器增益特性曲线。

    Tx链路中任何单元的器件增益变化会导致开环增益特性在X方向移动。例如,任意低增益器件导致整个开环增益特性曲线移动到右边。因此,为了产生相同的输出功率电平,必须产生一个较大的PDM输出值。实际上,只要开环AGC特性曲线两端的增益保持不变,则任意AGC放大器转换部分的任何增益变化在定标之后都可消除。然而,应当注意上述对Tx增益不利的影响。在只有MRFIC1854的部分AGC特性曲线被涵盖的情况下,尽管最大PDM码被输入,某些低增益器件不能产生最大输出功率。

    为处理此问题,一种解决方案是在Tx AGC电路中增加控制信号(见图4)。用另外的PDM输出(“PDM1”或“PDM2”)为AGC放大器(MRFIC1854)提供一个DC信号,在Tx_AGC_ADJ输出加上此PDM电压来调整Tx AGC特性曲线使其返回到预置位置。从Tx功率定标得到此调整电压,然后把它变换回PDM输出信号。相应的PDM输出值永久地存在MSM3000中。这种方法的优点是:减少了个别器件的有害的增益变化影响、对Tx增益干扰较小、具有更精确Tx功率定标。从另一方面来看,这些优点是以MSM3000控制软件修改、定标程序修改和稍微长一定的定标时间为代价的。因此现在大多数设计已包含电平转换的OPAMP,所以可以不需要另外的元件。为节省定标时间,通常把另外的PDM输出设置为零。只对失效的MS做额外的定标。

    在设计电平转换网络时,不管是否采用所建议的Tx AGC电路,都应该认定ITF3000和MRFIC1854的增益特性和PA的增益变化。增益变化数据可提供增益如何随器件不同而变化的概总值。考虑到容限数据,可设计具有足够余量的合适的电平转换电路来涵盖AGC放大器的增益变化,使其对产品增益容限的影响最小。

关键字:cdma  混频器  解决  解决方案

编辑: 引用地址:http://www.eeworld.com.cn/wltx/RFID/200605/2408.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
cdma
混频器
解决
解决方案

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved