用STEL-2000A设计扩频遥控系统

2006-05-07 15:50:13来源: 电子技术应用

扩频遥控系统中的应用实例,包括硬件设计和软件设计两部分,硬件部分着重STEL-2000A的接口设计,软件部分着重STEL-2000A的内部编程。

近年来,随着无线通信设备的迅猛增长,空间的电磁环境变得愈来愈复杂,相互间的干扰现象层出不穷。在对可靠性要求较高的场合,如保安、调度、指挥等,传统的调幅、调频通信系统,由于其抗干扰能力较弱,已不能很好地发挥作用。扩频通信技术以其抗干扰能力强、保密性好、能抗多径衰落、在采用低信号功率谱密度时对同频段内其它通信设备干扰小等优点,在军用民用通信领域均得到了广泛的应用。STEL-2000A是美国Standford Telecom公司与Zilog公司联合研制的单片全数字扩频处理器,具有很哟的信息处理能力,可应用于多种无线扩频系统中,如无线局域网、无绳电话及其它数据传输和处理系统。

1 STEL-2000A的特点及结构

STEL-2000A的主要特点有:

·在单片CMOS集成电路中完成直接序列扩频及其突发包的调制解调等全部工作;

·1bit数据可扩展成11~64位扩频码(chips),最高扩频码率为22Mchips/s;

·两具完全独立的64位的伪随机码序列分别用于同步头和数据的扩展处理;

·支持全双工和半双工操作,可实现频分双工和的分双工;

·可进行中频直接采样;

·具有丰富的可编程功能使之支持各种工作模式;

·具有功率管理的特点便于实施发射功率控制;

·100脚的PQFP封装,可使设备体积减小。

图1是STEL-2000A的结构框图。它将数字下变频器、PN匹配滤波器、差分解调器等集成在一个接收部分里,其输入是经A/D转换后的数字中频信号RXIIN7-0和RXQIN7-0;发送部分包括差分BPSK/QPSK编码器、PN码调制器以及BPSK/QPSK调制器等,其输出是送给~外部D/A转换器的数字中频信号TXIFOUT7-0。

从结构上看,STEL-2000A采用数字匹配滤波器(数字相关器)实现扩频信号的解扩,解决了一般扩频系统为之付出重大代价的伪随机码同步问题。另外,它采用的差分解调方式,避免了相干载波的提取和相位模糊问题,简化了系统的设计。

2 STEL-2000A的性能

STEL-2000A的PN码长度为11~64bit,扩频增益为10.4~18.1dB,能在一个符号周期内实现对伪码的捕获。本人用SPW通信系统仿真软件对SETL-2000A的数学模型进行了仿真,得到了如下结果:

·数字匹配滤波器对扩频信号的载频来说是一个窄带滤波器,只有输入的信号为“零中频”时,才能得到最大的相关峰值。如下变频率频差不为0,即载频不为0时,数字匹配滤波器输出的相关峰值会减小。频差对相关峰值的影响见表1(PN码长64bit,PN码速率=1.024Mchips/s)。

表1 频差对相关峰值的影响

频差/KHz 0 5 10 15
相关峰值 1 0.847 0.469 0.165
衰减量/dB 0 0.7 3.3 7.8

·AFC环路的鉴频器具有正弦鉴频特性,其鉴频函数为:

g(△f)=ksin(2π△f/F)

其中△f为频差,F为符号率(在DBPSK调制方式时为数据传输率的一半)。当f/F<0.5时,AFC环路能很好的锁定。如符号率为16kbps时,允许的最大频率差为8kHz。

·当PN码长度和速度一定时,下变频频差和调制方式是影响STEL-2000A抗干扰性能的主要因素。假设信道只存在高斯白噪声,在带限2.5MHz、输入信号S/N=0dB的情况下,作数据传输仿真实验以考察系统的整体性能:当数据传输率为32kpbs、下变频频差为1.6kHz时、采用DQPSK调制方式时,作10000个数据的传输仿真实验,结果出现58个数据错误。将下变频频差改为1kHz后,再作相同实验,未出现数据错误;当数据传输率为16kbps、下变频频差为3.6kHz时,作10000个数据的传输仿真实验,结果再现164个数据错误。将下变频频差改为2.6kHz后,再作相同实验,未出现数据错误。由此证明,DBPSK调制方式的抗干扰性能比DQPSK方式强,但付出的代价是在相同带宽条件下数据传输率降低了一半。

3 STEL-2000A的应用

下面介绍一个以STEL-2000A为信心的直接序列扩频遥控系统,该系统的主要技术指标为:数据传输率16kbps。伪码长度64bit,扩频增益18dB,调制方式BPSK,发射载频230MHz,带宽0.048MHz。

3.1 发射机部分的硬件设计

图2是遥控系统的发射机部分。它主要由STEL-2000A扩频处理器、GMS90C31单片机、BPSK调制器和RF功放模块等部分组成。GMS90C31是韩国LC公司生产的与8031完全兼容的单片机,具有40MHz的时钟速率。它与外围的EPROM2764程序存储器、74AHC573地址锁存器共同组成了基带数据处理系统,完成STEL-2000A的初始化及控制、遥控指令帧的编码等工作。图中六位拨码开关用来设置接收机的地址码,使一台发射机可同时遥控64台接收机。

每条指令帧由一个15bit的突发数据包组成,指令帧的前6bit为地址码,中间5bit为指令码,后4bit为纠错码。利用匹配滤波器能够在一个调制数据的时间内完成捕获的功能,一个突发数据包只需一个捕获/前置符作为同步头,后面可跟任意长度的同步/数据符号,帧结构如下。

    捕获/前置符和同步/数据符所使用的PN序列是完成独立的,因此捕获/前置符可作为数据超始位置的标志,不需再加专门的帧同步信号。同步/数据符的相关峰可作为数据的位同步信号,因此在编码时不需考虑连“0”、连“1”的情况。

STEL-2000A通过中断方式从GMS90C31获取指令帧数据。但由于其数据请求信号TXBITPLS为高电平有效,且宽度较窄(等于伪码周期512ns),不能可靠地触发中断,因此在GMS90C31的端加入了反相器和单稳电路,将TXBITPLS变为较宽(约10μs)的负脉冲信号。STEL-2000A完成指令帧数据的差分编码和扩频处理工作,它将低速的基带数据(16kbps)变为高速的伪码序列(1.024Mbps),去调制外部的高频本振信号,生成载频为230MHz的DBPSK调相信号。RF功放模块是自制的输出功率1W的小功放,天线为230MHz螺旋全向天线。

3.2 接收机部分的硬件设计

图3是遥控系统的接收机部分,主要由STEL-2000A扩频处理器、GMS90C31单片机、A/D转换器、90°功分器和RF模块等部分组成。AD9057是单电源的高速8位A/D转换器,最高采样率80Msps,具有SSOP的小尺寸封装,易于制版布线;90°功分器是成都亚光电工厂生产的GFHZ-2-14型,输入频率7~14MHz,它和两块AD9057组成了采样率为45.056Msps的正交采样结构,并与STEL-2000A中的复数下变频器相配合,能消除混频时的镜像频率,实现10.7MHz中频信号的单边带下变频;STEL-2000A担负着中频信号的数字下变频、伪码解扩、差分解调、AFC等繁重工作,它与GMS90C31单片机的界面为解调后的基带数据;GMS90C31单片机完成基带数据的处理工作,如地址识别、数据检错纠错等。STEL-2000A的RXOUT端是数据输出口,为同步时钟,RXACTIVE是数据包的起止信号,其时序关系如图4所示。

RXACTIVE的反相信号与GMS90C31的INTO相连,当STEL-2000A收到数据包时,GMS90C31就会产生中断INT0,完成接收数据包的准备工作。的负脉冲较窄(等于伪码周期512ns),为了提高中断的可靠性,将其通过单稳态电路展宽(约10μs)后接到INT1上,使GMS90C31能可靠地对P1.6端的基带数据进行中断采集。RF模块是自制的高灵敏度接收、变频单元,输出为10.7MHz的中频信号,接收灵敏度-1000dBm。天线为配套的230MHz螺旋全向天线。

在系统联试时,将发射机的功率衰减30dB,使实际发射功率为1mW时,在500m的开阔距离上,接收机能正确接收发射机发出的遥控指令。另外,通过实验测得,接收机能抗+3dB的同频干扰,即干扰功率可比信号功率大3dB,由此证明扩频系统的抗干扰能力较强。

3.3 软件设计

STEL-2000A具有丰富的可编程功能,其内部包含有87个状态寄存器,编址为00H~56H,作为GMS90C31的扩展RAM区使用,通过GMS90C31向这些状态寄存器写入特定的值,可使STEL-2000A支持各种工作模式。发射机和接收机的软件均包括GMS90C31初始化模块、STEL-2000A初始化模块、数据采集模块和数据处理模块四个部分。

GMS90C31初始化模块主要完成输入引脚的定义、装入地址码、设置中断类型、设置数据采集的初始值等工作;STEL-2000A初始化模块完成对其内部状态寄存器的参数设置;数据采集模块将输入数据采集到GMS90C31内部RAM区的指定位置,并对采集的数据进行计数,到一定数量后停止采集;数据处理模块的主要功能有:指令帧的编码、数据检错和纠错、地址码识别等。这里由于篇幅的原因,不对各软件模块作详细的介绍,只着重介绍一下软件开发中的重点和难点:如何正确设置STEL-2000A内部各寄存器的参数。这需要对系统的工作原理和数据模型有一定的了解和研究,有关这方面的情况请参见文献[1]和[2]。

STEL-2000A中接收部分的寄存器有64个,编址为00H~3FH,发射部分的寄存器23个,编址为40H~56H,可用单片机的MOVX@R0,A指令对这些寄存器的值进行修改。下面以接收部分为例介绍主要参数的设置情况。

·调制类型

选择BPSK方式,将36H的bit 1设为1;

·伪码控制

同步伪码和数据伪码的长度均为64位,选择时需注意伪码的自相关特生和伪码间的正交特性。伪码系数用01(+1)和11(-1)表示。同步伪码存于07H~16H的地址单元中,设置情况如下:

地址:07H 08H 09H 0AH 0BH 0Ch 0DH 0EH 0FH 10H 11H

参数:FFH F5H 77H 5FH 75H 7FH F5H 7DH D7H D5H F5H

地址:12H 13H 14H 15H 16H

参数:75H 77H 55H FDH 7FH

数据伪码存于17H~26H的地址单元中,设置情况如下:

地址:17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H

参数:FFH F7H 5FH 7FH F7H 55H F7H 57H DFH

77H 5DH

地址:22H 23H 24H 25H 26H

参数:5DH 5FH 77H 57H D5H

数据伪码的长度由2DH的bit0~5确定,64位长的伪应设为3FH。需要注意的是不需设置同步伪码的长度。

·NC0控制

NC0的输出频率fNC0取决于中频采样率RXIFCLK和频率控制字FCW。频率控制字FCW存地03H~06H的地址单元中,其计算公式为:

FCW=fNC0.2 32/RXIFCLK

当RCIFCLK为45·MHz,fNC0为10.7MHz时,可计算出FCW为3CCBA2E9.对于正交采样模式,fNC0应为负频率,因此取3CCBA2E9的补码C3345D16作为FCW,将其低位装入03H,高位装入06H。

·采样率控制

STEL-2000A规定基带采样率为伪码速率的两倍。当伪码长度为64bit,数据速率为16Kbps时,基带采样率应为2.048MHz,它相对于中频采样率45.056M的分频系统为22。因此,02H中的值应设为15H。

·突发控制

接收机工作在突发模式,当捕获到同步头后,解扩出一帧数据,然后又处于捕获状态。每帧数据的长度由2EH(低位)和3AH(高位)中的值决定。本系统的指令帧长度为15bit,因此2EH中的值设为11H,3AH中的值设为00H。

·门限设置

匹配滤波器相关峰检测门限的设置对系统的整体性能有较大的影响。通过进行计算机仿真的结果和参考STEL-2000A开发板的数据,并结合具体的实验情况,将捕获门限和解扩门限设为00FFH。因此,29H和2BH中的值应设为FFH,2AH和2CH中的值应设为00H。

关键字:设计  扩频遥控  遥控系统  系统

编辑: 引用地址:http://www.eeworld.com.cn/wltx/RFID/200605/2362.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
设计
扩频遥控
遥控系统
系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved