什么是QAM ?

2008-05-21 16:10:50来源: 福建移动电视网

  QAM是一种在两个正交载波上进行幅度调制的调制方式。这两个载波通常是相位差为90度(π/2)的正弦波,因此被称作正交载波。这种调制方式因此而得名。

  概述

  同其它调制方式类似,QAM通过载波某些参数的变化传输信息。在QAM中,数据信号由相互正交的两个载波的幅度变化表示。

  模拟信号的相位调制和数字信号的PSK可以被认为是幅度不变、仅有相位变化的特殊的正交幅度调制。由此,模拟信号频率调制和数字信号FSK也可以被认为是QAM的特例,因为它们本质上就是相位调制。这里主要讨论数字信号的QAM,虽然模拟信号QAM也有很多应用,例如NTSC和PAL制式的电视系统就利用正交的载波传输不同的颜色分量。

  类似于其他数字调制方式,QAM发射信号集可以用星座图方便地表示。星座图上每一个星座点对应发射信号集中的一个信号。设正交幅度调制的发射信号集大小为N,称之为N-QAM。星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。数字通信中数据常采用二进制表示,这种情况下星座点的个数一般是2的幂。常见的QAM形式有16-QAM、64-QAM、256-QAM等。星座点数越多,每个符号能传输的信息量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。

图1 4QAM、16QAM、64QAM星座图

图2 16QAM信号电平与信号状态关系

  当对数据传输速率的要求高过8-PSK能提供的上限时,一般采用QAM的调制方式。因为QAM的星座点比PSK的星座点更分散,星座点之间的距离因之更大,所以能提供更好的传输性能。但是QAM星座点的幅度不是完全相同的,所以它的解调器需要能同时正确检测相位和幅度,不像PSK解调只需要检测相位,这增加了QAM解调器的复杂性。

  M-QAM信号波形的表达式为:

 

其中g(t)为码元信号脉冲。

  因此QAM可以分解为分别在两个正交的载波cos2πfctsin2πfct上的M1-PAM与M2-PAM的叠加,其中M1M2 = M

  将上面sm(t)变形得到

 

其中θm = arctan(Ams / Amc)

  因此,M-QAM还可以看作是M1-PAM与M2-PSK的叠加,其中M1M2 = M

  图3示出了产生多进制QAM信号的数学模型。图中x'(t) 由序列a1,a2,…,ak 组成,y'(t)由序列b1,b2,…,bk 组成,它们是两组互相独立的二进制数据,经2/m变换器变为m进制信号x(t)和y(t)。经正交调制组合后可形成QAM信号。

图3 QAM信号产生

  QAM信号采取正交相干解调的方法解调,其数学模型如图4所示。解调器首先对收到的QAM信号进行正交相干解调。低通滤波器LPF滤除乘法器产生的高频分量。LPF输出经抽样判决可恢复出m电平信号x(t)和y(t)。因为和取值一般为±1,±3,…,±(m-l),所以判决电平应设在信号电平间隔的中点,即Ub=0,±2,±4,…,±(m-2)。根据多进制码元与二进制码元之间的关系,经m/2转换,可将电平信号m转换为二进制基带信号x'(t)和y'(t)。  

图4 QAM信号解调

  性能

  数字通信中经常用错误率(包括误符号率和误比特率)与信噪比的关系衡量调制和解调方式的性能。下面给出一些概念的记法,以得到AWGN信道下错误率的表达式:

  • M = 星座点的个数

  • Eb = 平均比特能量

  • Es = 平均符号能量 = 

  • N0 = 噪声功率密度

  • Pb = 误比特率

  • Pbc = 每个正交载波上的误比特率

  • Ps = 误符号率

  • Psc = 每个正交载波上的误符号率

  •  

Q(x)表示有着零均值和单位方差的高斯随机变量t 大于x的概率。它与高斯误差补函数的关系是:

  矩形QAM

  矩形QAM(Rectangular QAM)的星座图呈矩形网格配置。因为矩形QAM信号之间的最小距离并不是相同能量下最大的,因此它的误码率性能没有达到最优。不过,考虑到矩形QAM等效于两个正交载波上的脉冲幅度调制(PAM)的叠加,因此矩形QAM的调制解调比较简单。而后面介绍的非矩形QAM虽然能达到略好一些的误码率性能,但是付出的代价是困难得多的调制和解调。

  最早的矩形QAM一般是16-QAM。其原因是很容易就看得出来2-QAM和4-QAM实际上是二进制相移键控(BPSK)和正交相移键控(QPSK),而8-QAM则有将单数位的位分到两个载波上的问题,8-PSK要容易得多,因此8-QAM很少被使用。

  误码率性能

  可以通过单个正交载波上PAM的性能近似得到QAM的误码率。假设矩形M-QAM可分解为两个正交的-PAM,则有

,

  因此

.

  精确的误比特率要看比特与码元符号之间的映射关系。对于以格雷码作比特配置并且每个载波承载相同比特数的情况,由于相邻两个符号之间仅相差一个比特,因此可以得到误比特率:

,

  因此

.

  单数位-k QAM的误码率性能

  对于k如8-QAM(k = 3)要给出误码率要困难得多,一个近似上限为:

.

  精确的误比特率Pb要看位的排列。

  非矩形QAM

  QAM本身有许多可以使用的排列,这里只列出两种为例。

  环状8-QAM是最佳的8-QAM,它可以使用最低的平均能量来达到最小的欧几里德度量。环状的16-QAM是亚优化的。环状的QAM非常好地显示出QAM与相移键控之间的关系。不规则QAM的错误率很难广泛地给出,因为它们按其排列各不相同。显然的上限是欧几里德度量:

.

  在这里误码率也与位的排列有关。

  虽然对一个特别的M有最佳的、不规则的QAM,但是一般人们还是使用规则的QAM,因为它们的调制和解调要方便得多。 

关键字:相移  错误率  载波  幅度调制  举行  功率  密度

编辑:汤宏琳 引用地址:http://www.eeworld.com.cn/szds/2008/0521/article_210.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
相移
错误率
载波
幅度调制
举行
功率
密度

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 电视相关 白色家电 数字家庭 PC互联网 数码影像 维修拆解 综合资讯 其他技术 技术产品 应用设计 论坛

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved