高效的LED车内照明设备的实现方法

2007-09-20 15:18:44来源: 电子系统设计
近来,在开发高效能低消耗LED的过程中所取得的进展,使这种照明光源在汽车内部照明系统的设计中成为一种技术性选择。本文将介绍汽车内部照明LED所用到的多种驱动结构与拓扑结构的具体细节,并对热管理问题加以讨论。

LED正在被许多汽车照明系统所使用。正是由于LED具有尺寸小、效率高的优点,使之适用于车内照明。因此,近来在开发高效能低消耗LED的过程中所取得的进展,使这种照明光源在汽车内部照明系统设计时成为一种技术性选择。但是,想要驱动这些器件使之发挥最佳性能,却是一门艺术。

LED需要专门的工作电流,需要在一个标准宽度的值域当中拥有调整LED正向电流的办法与精准性,需要车用电池组与充电系统以及串联限制电阻器。

在调节LED工作电流时创新使用标准N型沟道耗尽型晶体管(JFET)比使用电阻能获得更好的效果。JFET可以被看作是一个压控电阻。通过简单地调节源极电压,使源极能够提供相对稳定的电流,以此作为串联LED的电流源。当漏极电压与未经调整的开关型蓄电池相通连时,便能提供一个相对稳定的电流,与标准电阻相比,使用JFET能提供更高的效率。

LED车内照明将可应用在:仪表盘背光;控制台背光;顶灯;便捷光源;RGB基调光源。

电路拓扑结构、驱动器电流要求和热管理特别注意。图1所示电路几乎涉及所有汽车LED光源应用。如果LED电流低于100mA(大多数车内照明应用的类型都是背光或开关照明,电流一般为30mA),电阻阻值可由串联在LED两端的导通电压(Vfwd)计算得出。当使用13.5 V之类的特殊电源电压时,电阻值的确定如下所示:

Vsupply - Vsw_bat - Vrpp -I_led*R1 - 2 Vfwd=0 V

Vsw_bat = 0 V

Vsupply = 13.5 V (一般情况)

Vrpp = 0.8 V

Vfwd = 3.5 V

I_led = 30mA

R1 = 13.5 - 0.8 - 2*(3.5) = 190 Ω/30

由专用电阻来调整LED电流的方法已被大家所熟知,并且可通过选用一个阻值在一定范围内的电阻作为补偿来解决LED最坏情况下的Vfwd压降问题。然而,供电电压在9V至18V之间变化,LED电流也随之改变。在同样190Ω电阻和9V电压情况下重新调整公式,I_led值变为6.3mA.假定所有的参数保持不变,供电电压上升至18 V时I- led值为53mA。

仪表板通常都要有背光,以便使驾驶员能够在光线较弱的条件下看清仪表盘和指针。首先,亮度调节能力是最重要的——能提供100 : 1的亮度调节比。此外,为了方便驾驶员对汽车状态进行了解,一些指示用灯也需要背光,例如安全气囊检验、动力系统状态、液面情况等等。一般情况下,最多能同时应用30个LED。

将图1中的LED连接扩展为6路并联,并且在低压的一端由晶体三极管提供脉宽调制( PWM)光线调节功能。先前计算出的电阻阻值用以调整LED的正向电流,因此,在给定电源电压的条件下,总电流的大小由LED并联支路的数量决定。同样,供电电压在9V至18V之间变化,LED电流也随之改变。在实际应用中,供电电压为9V时,LED必须发出足够高的亮度以便让驾驶员能够正确读出仪表板读数。在18V时,印刷电路板(PCB)的发热问题又会凸显,这就需要我们对由此引发的最坏状背光灯所使用的LED导通电压随颜色而定,红色、橙色、绿色和淡黄色LED的导通电压为2.4V,蓝色和白色LED可高至3.8V。如果在串联情况下前两个LED导通电压为2.4V,那么恭喜你还可以再串联一个LED。也就是说,如果我们在一组LED中使用了一个标准的白光灯,那么此支路上的LED数就被限定为两个。如果车辆在维修时蓄电池极性接反,可产生高达- 15V的反极性电压,此时需要一个反极性保护二极管。LED的反向额定电压一般为- 5V,因此,在极性相反的情况之下,我们需要一个阻塞二极管来保护LED。

有一种通过控制电路低压端电压来调节LED亮度的方式,主机可通过偏压电阻、晶体三极管或数字晶体三极管(如MMUN2211系列)来作为一个简单接口对LED进行控制。晶体三极管具有集成Rb和Rbe电阻,因此使用逻辑电平信号便足以驱动基本的发射极电路。通过使用这样的晶体三极管并以单频控制PWM的占空比,可为电路中的LED提供一个较宽的亮度调节范围。

不只是LED驱动,有很多电路应用都需要低成本的固态稳流器。因此,一个固态稳流器应包含以下几点因素:低成本;在较宽的导通电压范围内保持电流稳定;以低导通电压运行时压降较小;导通电压过高时可进行功率限制;为并联应用提供理想的双端电流源;为LED亮度调节提供高频PWM控制;对直接引入的射频能量具有抗磁化特性;具备高等级的静电抗干扰能力。

用耗尽型N沟道场效应管替换图1电路中的190欧姆电阻便可成为图3所示电路。简单地将栅极与源极短接,通过使用1 V以上的电压将漏极与源极偏置,可产生LED驱动电流。值得一提的是,在使用JFET代替电阻来调整LED正向电流的过程中,当漏源电压增大(电池电压变化)时,电流仍可保持相对稳定。图4显示了JFET的稳流特性,在供电电压的正常工作范围内,可通过测定JFET的伏安特性曲线来深入了解它的这一特性。

如图4所示JFET伏安特性曲线,首先是线性区域,通过JFET的电流随着漏-源极间的压降增大而呈线性增长。这个区域的电压范围相对较窄(大于LED前向压降且小于1.5V)。我们可以比较一下,同样在9V供电输入的情况下图1和图3中LED的电流有何不同。图1中电路取反极性二极管压降为0.8V,留给190欧姆电阻1.2V电压,此时LED电流6.3 mA。而图3电路中JFET压降1.2V,这就使LED的电流变为21mA。因此我们看到,在较低的线路电压条件下,使用JFET偏置方法所提供的LED电流约为图1中供电方式的3.5倍。这类似于线性调压器中对骤降电压的控制。这种较低的跌落电压特性可以在车用蓄电池电量不足的情况下为LED提供较大的电流和照明亮度。

图4中接下来的区域是恒流区,此区域电压范围为1.5 V(LED导通电压)至大约6 V ( Vbattery为9.2 V至14.5 V)。此恒流区明确了JFET饱和漏极电流Idss的大小。通过将栅极与源极短接,此区域内的Idss便成为恒流源电流,并且,此恒定电流值可根据需要选取。

图1中LED电流由一电压值( 13.5 V)决定,此电压值不变,LED电流也随之恒定。但如果此电压值产生变化会怎样呢?JFET恒流区域内不只有一个供电电压偏置点。紧接着线性区之后,随着JFET的压降增加,JFET漏极电流基本上进入夹断状态,电流的变化率也骤然减小(电流曲线即时斜率或导纳减小)。因此JFET能够在一个较宽的电池电压变化范围内( 9.5 V到14.5 V)提供一个相当可靠的恒定电流。

与电阻相比,利用JFET的恒流区产生恒定电流能获得更好的效果。针对单一偏置电流制造出的LED所拥有的导通电压服从正态分布,在电源电压为13.5 V时,为了使输出的电流保持在30mA,必须要解决由LED导通电压的偏差所带来的压降问题。此时如果想按照图1电路正常使用LED,那恐怕需要安插大量电阻来补偿电路中不同LED的不同正向电压。看起来购买能覆盖所有导通电压范围的LED(按照不同的导通电压分类)有助于降低成本,但具有讽刺意义的是,这迫使用户要储存同等数量具有不同阻值的电阻。作为替代,如果使用图5C中所示电路,恒流源或JFET将能够忽略LED的导通电压,从而直接提供某一特定值的稳定电流。

图6中所示的第三个区域是图4区域中电压达到40V之前的延续。在偏置情况下,在供电电压从6V升至40V期间,由于元器件内沟道的电场作用使得JFET电流曲线呈现出折回形态。在沟道电场作用下,载流子被赶出沟道,此方式可有效减小JFET上的电流与功率损耗。这种自保护功能使得JFET在遇到极大的电压时也能正常为LED偏置提供恒流驱动。

到目前为止我们认为最坏的情况是持续供应18V电压,然而双倍电池供电电压的情况也是存在的。车辆发电机/交流发电机甩负载时会产生大规模感应瞬变现象,这种现象会持续数百毫秒,而且有时供电电压会在一分钟内上升至26 V,有时会达到40V或更高。因此我们需要一个车辆负载保护方案。

图7所示为40V以下BSR58的计算功率与它的理想恒流源功率,显示出JFET电路的节电能力。30V压降下190Ω电阻功率为4.7W,I_led为156mA。此类电流带来功率耗损过度并会缩短LED使用寿命。

使用JFET来为LED偏置提供电流已经获得广泛认同,如果有一个简单的方法能够调整Idss值的大小那就更好了。图8a中电路就是通过并联3个30mA JFET产生90mA LED偏置电流的。图8b中,将JFET与一个2.7 kΩ电阻并联,使之通过微调Idss电流,在最大20V电压下也能提供一个相当平稳的恒定电流。图8c所示JFET与一个200Ω电阻串联,这个电阻的作用是减小Vgs电压,以此达到减小Idss电流的目的。

我们已经看到,在许多汽车LED应用中通过使用电阻偏置电路配以BSR58 JFET恒流源,为我们带来很大方便。这种恒流源无论在低、中、高线路电压下都能胜任。此外,我们可以通过增加电阻或附加并联的JFET很容易地调整JFET供电电流大小。然而通过JFET使LED偏置所带来的最大优势是,我们可以忽略为补偿每个LED固有的导通电压差异所必需的大范围电阻阻值。

关键字:偏置  恒流  感应  负载

编辑: 引用地址:http://www.eeworld.com.cn/qcdz/qt/200709/3163.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
偏置
恒流
感应
负载

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved