剑桥大学利用图像识别和深度学习技术,提升自动驾驶“感知”与“定位”能力

2016-02-22 18:39:16来源: 汽车前沿

    汽车要实现真正的无人驾驶,它必须能够感知和识别周围的物体,并且要知道自己的确切位置。这两方面都是无人驾驶技术的核心。

 

    英国剑桥大学的一个团队利用图像识别和深度学习技术在这两个方面取得了一定的突破。他们针对这两个方面分别研发了SegNet系统和PoseNet系统。尽管它们目前还不能控制无人驾驶汽车,但是它们能让机器“看见”,精确定位和识别所看之物,这种能力是开发自动驾驶汽车和机器人的关键因素。

1.SegNet系统

    在无人驾驶汽车对周边物体的感知方面,传统的思路是使用雷达传感器,或雷达与LIDAR(一种遥感技术)相结合的设备,但是这些设备价格非常高,所有设备加起来甚至比整辆车还贵。这对于无人驾驶技术的快速发展非常不利。

 

    剑桥大学研发团队的SegNet系统避开了这些昂贵的设备,利用传统的相机来实现对周围物体的识别。它能拍下街景照片,实时将照片中的物体分成12个类别,例如路面、路标、行人、建筑物和骑自行车的人等。它能应对不同的光照和阴影条件,以及夜间环境,标记像素的准确度达到90%以上。

 

    研究人员运用了深度学习的技术来训练SegNet系统,希望它能在更复杂的环境及气候条件下能识别出物体。剑桥大学的一组本科生手工标记了5000张图片中的所有像素,研究人员利用这5000张图片训练了SegNet,再进行测试,效果很不错。

 

    SegNet训练的数据大多是高速公路或城市环境,而对乡村、雪天和沙漠还缺乏足够的训练——不过它在测试中对这些环境的成绩也不错。

    这个系统目前还不能直接用于无人驾驶汽车或卡车,但是它可以用于警示系统,与目前一些轿车上所使用的防撞技术相类似。

    对于机器学习来说,数据库是比较关键的,利用越多的数据对其进行训练,其精确度就会更高。

2.PoseNet系统

    PoseNet系统和SegNet系统相似,都需要对图像进行识别。PoseNet系统是一个可以根据拍摄的照片进行精确定位的系统,该系统通过一张224x224 RGB的图像识别出用户的位置和方向。

 

    这个系统定位的精确度可以达到:室外环境下,精确度为2m和3°;室内环境下,精确度为0.5m和5°。相较于GPS定位,这个精确度要高出许多,并且PoseNet系统克服了GPS的弱点:在没有信号的地方,例如室内、隧道或GPS信号不好的城市,GPS无法定位。这些对于PoseNet都不是问题。

 

    与SegNet系统一样,PoseNet系统也需要深度训练,以及强大的数据库支持。PoseNet团队成员Kendall说:“近年来,人工智能和机器人的发展非常迅速。而我们团队最酷的地方就在于开发了一个使用深度学习的技术来识别你的位置和周围的物品——这是深度学习第一次被用来做这样的事。”

关键字:剑桥大学  图像识别  自动驾驶

编辑:鲁迪 引用地址:http://www.eeworld.com.cn/qcdz/article_2016022215208.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
剑桥大学
图像识别
自动驾驶

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved