datasheet

murata村田

文章数:487 被阅读:97864

账号入驻

99%的电子工程师掉进过的坑,看你有没有中招?

2018-06-28
    阅读数:

不要以为“永远在改bug”的程序猿是最爱“犯错误”的理工男,电子攻城狮也不例外!关键是很多时候,工程师并不觉得自己在犯错误,反而以为自己找到了更好的解决方式而窃喜呢。


面对林林总总的元器件和复杂的电路图,工程师们不时出现的小错误是难免的,而且说不定就从哪次错误中发现了“新大陆”,那你就成为科技革命的先驱了!


但是对于资历尚浅的新手工程师来说,这些过来人的经验可能会对你大有裨益,这些前人趟过的雷你就不要再去踩了,快来看看这10个错误你有没有犯过?


误区一、信号完整性


常见错误1:为保证干净的电源,去偶电容是多多益善。


正解:总的来说,去偶电容越多电源当然会更平稳,但太多了也有不利因素:浪费成本、布线困难、上电冲击电流太大等。去偶电容的设计关键是要选对容量并且放对地方,一般的芯片手册都有争对去偶电容的设计参考,最好按手册去做。


常见错误2:既然是数字信号,边沿当然是越陡越好。


正解:边沿越陡,其频谱范围就越宽,高频部分的能量就越大;频率越高的信号就越容易辐射(如微波电台可做成手机,而长波电台很多国家都做不出来),也就越容易干扰别的信号,而自身在导线上的传输质量却变得越差。所以能用低速芯片的尽量使用低速芯片。


误区二:系统效率


常见错误1:这么多任务到底是用中断还是用查询呢?还是中断快些吧。


正解:中断的实时性强,但不一定快。如果中断任务特别多的话,这个没退出来,后面又接踵而至,一会儿系统就将崩溃了。如果任务数量多但很频繁的话,CPU的很大精力都用在进出中断的开销上,系统效率极为低下,如果改用查询方式反而可极大提高效率,但查询有时不能满足实时性要求,所以最好的办法是在中断中查询,即进一次中断就把积累的所有任务都处理完再退出。


常见错误2:这主频100M的CPU只能处理70%,换200M主频的就没事了。


正解:系统的处理能力牵涉到多种多样的因素,在通信业务中其瓶颈一般都在存储器上,CPU再快,外部访问快不起来也是徒劳。


误区三:可靠性设计


常见错误1:这块单板已小批量生产了,经过长时间测试没发现任何问题,不用再看芯片手册了。


正解:硬件设计和芯片应用必须符合相关规范,尤其是芯片手册中提到的所有参数(耐压、I/O电平范围、电流、时序、温度PCB布线、电源质量等)必须严格遵循设定,不能光靠试验来验证。很多公司有不少产品都有过惨痛的教训,产品卖了一两年,IC厂家换了个生产线,板子就不转了,原因就是人家的芯片参数发生了点变化,但并没有超出手册的范围。如果你以手册为准,那他怎么变化都不怕,如果参数变得超出手册范围了还可找他索赔(假如这时你的板子还能转,那你的可靠性就更牛了)。


常见错误2:这板子坏的原因是对端的板子出问题了,也不是我的责任。


正解:对于各种对外的硬件接口应有足够的兼容性,不能因为对方信号不正常,你就彻底罢工了。它不正常只应影响到与其有关的那部分功能,而其它功能应能正常工作,不应彻底罢工,甚至永久损坏,而且一旦接口恢复,你也应立即恢复正常。


误区四:低功耗设计


常见错误1:这些总线信号都用电阻拉一下,感觉放心些。


正解:信号需要上下拉的原因很多,但也不是个个都要拉。上下拉电阻拉一个单纯的输入信号,电流也就几十微安以下,但拉一个被驱动了的信号,其电流将达毫安级,现在的系统常常是地址数据各32位,可能还有244/245隔离后的总线及其它信号,都上拉的话,几瓦的功耗就耗在这些电阻上了(不要用8毛钱一度电的观念来对待这几瓦的功耗,原因往下看)。


常见错误2:这些小芯片的功耗都很低,不用考虑。


正解:对于内部不太复杂的芯片功耗是很难确定的,它主要由引脚上的电流确定,一个ABT16244,没有负载的话耗电大概不到1毫安,但它的指标是每个脚可驱动60毫安的负载(如匹配几十欧姆的电阻),即满负荷的功耗最大可达60*16=960mA,当然只是电源电流这么大,热量都落到负载身上了。


误区五:成本节约


常见错误1:这板子的PCB设计要求不高,就用细一点的线,自动布吧。


正解:自动布线必然要占用更大的PCB面积,同时产生比手动布线多好多倍的过孔,在批量很大的产品中,PCB厂家在定价方面,线宽、过孔数量是重要的考量因素,它们分别影响到PCB的成品率和钻头的消耗数量,此外PCB板的面积也是影响价格的一方面。所以自动布线势必会增加线路板的生产成本。


常见错误2:程序只要稳定就可以了,代码长一点、效率低一点不是关键。


正解:CPU的速度和存储器的空间都是用钱买来的,如果写代码时多花几天时间提高一下程序效率,那么从降低CPU主频和减少存储器容量所节约的成本绝对是划算的。CPLD/FPGA设计也类似。


相信很多新手工程师在设计电路时有过类似的想法,如果你也中招了,转发出去给更多的人看到!你还犯过哪些低级/严重的错误?不妨分享出来大家一起探讨!


文章来源:网络转载


【投出您宝贵一票】沙龙活动在线调查


推荐阅读

ESD器件主要类别及村田A-TVS特点

村田要出手了,MLCC供需失衡能否改善?

LoRa技术谱写工业控制与电力应用新篇章

村田制作所推出超小型金属标签LXMSJZNCMF-198,助力手术器械跟踪

村田专用入门套件加快Nordic射频芯片电路的设计速度

LoRa让智能电网更聪明

浅析PCB设计的148个检查项目

【视频演示】天线周边用ESD保护装置解决方案

一文讲透静电放电(ESD)保护

高速电路设计中耦合电容的重要性

电子电路基础106条精心总结,建议收藏!

电阻、电容及电感的高频等效电路及特性曲线

【速速收藏】70种电子元器件、芯片封装类型

观看视频轻松搞定高音质Wi-Fi音频通讯系统开发

汽车研发:新能源汽车中功率电感器的应用与研究!

【RFID案例演示】:村田大阪配送仓库利用RFID实现的自由位置库存管理系统

想了解MLCC的制造工序吗?不容错过的视频短片

蓝牙5.0规格变化让物理层测试更加复杂

电容器静电容量是怎么决定的?你知道吗?

使用晶体谐振器的注意事项

详解MLCC的四个主要电气特性

汽车和汽车电子系统的发展-MEMS

电容器静电容量的温度特性,你了解多少?

SimSurfing(WEB版)的使用方法

如何获得陶瓷电容的详细规格表

【视频】:通信品质的决定性要素是村田的晶体滤波器

在贴装片状多层陶瓷电容器时,基板图案构成有哪些注意点?

独石陶瓷电容器的手工焊接问题,你知道多少?

片状独石陶瓷电容器发生断裂的原因是什么?你造吗?

片状独石陶瓷电容器在回流焊接时应注意哪些问题?

想要避免片状多层陶瓷电容器断裂,这些安装方法绝不能忽视


  如需了解其他内容,请关注后反馈给我



About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved