datasheet

QbitAI量子位

文章数:1128 被阅读:11761439

账号入驻

吴恩达团队新研究!用MRNet进行膝关节磁共振影像诊断 已媲美医生 | 论文

2018-11-29
    阅读数:
乾明 发自 凹非寺
量子位 出品 | 公众号 QbitAI

近日,吴恩达在Twitter上po了自己团队的最新研究。

一种能够预测“膝关节磁共振影像检查”异常的算法。

这个算法主要用于膝关节磁共振影像影像检查中的一般异常检测与特殊诊断,特殊诊断分别是前十字韧带撕裂和半月板撕裂。

在实际的测试中,模型在异常检测、前十字韧带撕裂检测和半月板撕裂检测方面的精度分别为93.7%、96.5%和84.7%,与普通的放射科医生相比,性能指标没有显著差异。

也就是说,它已经媲美医生了。研究结果显示,在一些方面,还超过了人类医生。

研究方法

数据集

研究采用的数据集来自斯坦福大学。2011年1月1日到2012年12月31日期间,斯坦福大学医学中心收集了1370例膝关节磁共振影像检查数据。

其中,异常检测中有1104例(80.6%);前十字韧带撕裂319例(23.3%);半月板撕裂508例(37.1%); 前十字韧带撕裂和半月板撕裂同时发生194例(38.2%)。

在研究中,数据集被分为三个部分。分别是训练集:1130例检查数据,1088名患者;调优集:120例检查数据,111名患者;以及验证集:120例检查数据,113名患者。为了更好的构建验证集和调优集,使用了分层随机抽样,确保每个数据集中有50个“积极的”标签(异常、前十字韧带撕裂和半月板撕裂)出现。每个患者的所有检测结果都是一样的。

外部验证数据集使用的是来自Clinical Hospital Centre Rijeka的前十字韧带损伤数据集,数据集一共有917个检测案例,作者将前十字韧带损伤的程度将数据集标签分成了3个等级:非受伤(690)、部分撕裂(172)和完全撕裂(55)。

在吴恩达团队的研究中,使用了分层随机抽样,将数据集按照60:20:20的比例分成了训练、调优和验证三个数据集。

具体的过程是:先在没有对外部数据进行再训练的情况下直接应用MRNet,然后使用外部数据中的训练集和调优集对MRNet进行优化。

分类任务是区分未受伤的前十字韧带和受伤的前十字韧带(部分撕裂或完全撕裂)。

模型设计

预测模型的主要组成部分是MRNet:一个卷积神经网络(CNN)图像分析系统,能够把3D的磁共振影像映射为概率。

MRNet的输入尺寸是s×3×256×256。其中s是磁共振影像系列中的图像数量(3是彩色通道的数量)。

首先,把每个2D的磁共振影像图像切片,通过特征提取器,获得包含每个切片特征的s×256×7×7张量。

然后应用全局平均池层,将这些特征减少到s×256。接着对切片应用最大池化,以获得256维向量,将向量传递到完全连接的层,获得预测概率。

模型性能

应用算法的深度学习模型,对异常检测、前十字韧带撕裂检测和半月板撕裂检测的精度分别为93.7%、96.5%和84.7%,与普通的放射科医生相比,性能指标没有显著差异。

不过在检测前十字韧带撕裂的时候,医生比模型的敏感度更高(不容易漏诊,但容易误诊),在检测半月板撕裂的时候,医生有更高的特异性(不容易误诊)。

需要注意的是,在使用模型辅助的临床效用测试中,前十字韧带撕裂的特异性平均提高了0.048(4.8%) ,健康患者被误诊为前十字韧带撕裂的几率大大降低。也就说,每100例健康患者中,大约有5例可以避免不必要的手术治疗。

整体而言,这个模型的性能已经不差于人类医生了,甚至在某些方面还要好于人类医生。

难怪吴恩达会在Twitter上表示,希望这个系统能够尽快部署,去帮助人类。

不过,论文中也提到了,最好的情况还是系统与人类医生合作,辅助人类医生对疾病进行诊断。

关于论文与传送门

研究论文已经发表在了《PLOS medicine》上。

地址:

https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.1002699

One More Thing

今天Facebook人工智能团队的负责人Yann LeCun也在Twitter上发布消息称,Facebook和纽约大学医学院开源了新的深度学习工具,以配合纽约大学最近发布的大型磁共振影像数据集。

配图也是一个膝关节磁共振图像……

链接:https://code.fb.com/ai-research/fastmri/

年度评选申请

加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态



最新有关QbitAI的文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved