datasheet

QbitAI量子位

文章数:398 被阅读:3656691

账号入驻

GitHub超过2600星的TensorFlow教程,简洁清晰还不太难丨资源

2018-10-18
    阅读数:
伊瓢 发自 凹非寺 
量子位 报道 | 公众号 QbitAI

最近,弗吉尼亚理工博士Amirsina Torfi在GitHub上贡献了一个新的教程,教程清晰简单,喜提2600颗星~

这个教程不一样

Torfi小哥一上来,就把GitHub上的其他TensorFlow教程批判了一番:

你们啊,都是为做而做,分享的教程都各种跳入跳出,要么搞的特别复杂,要么没什么文档支撑。

搞这些大家都不看的教程有什么用?既不能帮助开发人员搬砖,也不能帮助研究人员搞科研,浪费这时间干嘛?

所以,Torfi小哥决心做一个内容完整、又不会复杂到坑爹的TensorFlow教程。

教程、代码、笔记应有尽有

这套教程包含清晰的教程文档,介绍从如何安装TensorFlow到TensorFlow的基础知识,线性回归模型等基本的机器学习方法,神经网络的基本教程及代码。

针对每一个部分,这份教程都包含了教程文档:

代码:

以及包含注释的代码笔记:

而且,开头还有手把手的安装视频。

教程目录

· 如何安装TensorFlow

· 热身:测试和运行

· 基础知识
基础数学运算
TensorFlow变量

· 基本机器学习
线性回归
逻辑回归
线性SVM
MultiClass内核SVM

· 神经网络
多层感知器
卷积神经网络
自动编码
递归神经网络

传送门

教程地址:
https://github.com/open-source-for-science/TensorFlow-Course#why-use-tensorflow

另外,作者还推荐了其他一些他认可的TensorFlow教程资料:

TensorFlow-Examples
对初学者友好
https://github.com/aymericdamien/TensorFlow-Examples

Tensorflow-101
用Jupyter Notebook编写
https://github.com/sjchoi86/Tensorflow-101

TensorFlow_Exercises
从其他TensorFlow示例重新创建代码
https://github.com/terryum/TensorFlow_Exercises

LSTM-Human-Activity-Recognition
基于LSTM的TensorFlow在手机传感器数据上的递归神经网络分类
https://github.com/guillaume-chevalier/LSTM-Human-Activity-Recognition

加入社群

量子位AI社群开始招募啦,欢迎对AI感兴趣的同学,在量子位公众号(QbitAI)对话界面回复关键字“交流群”,获取入群方式;


此外,量子位专业细分群(自动驾驶、CV、NLP、机器学习等)正在招募,面向正在从事相关领域的工程师及研究人员。


进专业群请在量子位公众号(QbitAI)对话界面回复关键字“专业群”,获取入群方式。(专业群审核较严,敬请谅解)

诚挚招聘

量子位正在招募编辑/记者,工作地点在北京中关村。期待有才气、有热情的同学加入我们!相关细节,请在量子位公众号(QbitAI)对话界面,回复“招聘”两个字。

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态


About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved