datasheet

Icbank半导体行业观察

文章数:9798 被阅读:28082991

账号入驻

想做车用SiC元件?这点一定不能错过!

2019-01-08
    阅读数:

来源:内容来自「CTIMES」,谢谢。


在未来几年投入使用SiC技术来应对汽车电子技术挑战是ECSEL JU的WInSiC4AP专案所要达成的目标之一。ECSEL JU和ESI携手为该专案提供资金支援,实现具有重大经济和社会影响的优势互补的研发活动。由DTSMNS(Distretto Tecnologico Sicilia Micro e Nano Sistemi)牵头,20个专案合作成员将在技术研究、制程、封装测试和应用展开为期36个月的研发合作。本文将讨论本专案中与车用电子的相关内容,并聚焦在有关SiC技术和封装的创新。


WInSiC4AP联盟由来自4个欧盟国家(意大利、法国、德国和捷克共和国)的20个合作伙伴组成,包括大型企业、中小型企业、大学院校和政府科研机构。在这种背景下,企业(汽车制造、航空电子设备、铁路和国防)和垂直产业链(半导体供应商,电感器和电容器厂商)以及学术机构和研究实验室将合作设计解决方案,解决技术难题,分享专有知识,同时也可能出现无法预料的结果。WInSiC4AP的核心目标是为高效能、高成本效益的目标开发可靠的技术模组,以解决社会问题,同时克服欧洲在其已处于世界领先水平之细分市场以及汽车、航空电子、铁路和国防领域所面临的技术挑战。


WInSiC4AP藉由产业垂直整合的优势,依照应用需求优化技术,发展出完整的生态系统,并将相关问题作为可靠性问题给予全面分析。在当今美日等国家正在研发碳化矽技术,新企业抢占市场的背景下,该专案将提升欧盟工业、一级和二级供应商以及产业链下游企业的竞争力。专案组将针对目标应用开发新的拓扑结构和架构,在实验室层面模拟操作环境,推进目前急需的还是空白的技术、元件和展示产品的研发工作,以缩小现有技术水平与技术规范的极高要求之间的差距。


在开始讨论技术和开发目标前,图1为电动汽车概念的简单示意图。在这种情况下,功率转换系统和牵引马达所采用的电子元件是本专案的研究方向。


图1 : 电动汽车工作原理示意图


图2是众人所熟悉之矽和宽带隙材料(SiC,GaN)的比较图。在开关频率还不是重点的汽车应用中,卓越的驱动性能和宽广的工作温度范围,让SiC成为电动汽车设计者的首选功率元件。


图2 : Si、SiC和GaN的特性优值比较(source:YoleDeveloppement)


WINSIC4AP 的主要目标

主要目标


WinSiC4AP致力于为高效能、高成本效益的目标应用开发可靠的技术模组,以解决社会问题,并克服欧洲在其已处于世界领先水平的细分市场以及汽车、航空电子、铁路和国防领域所面临的技术挑战。


展示品


所有技术开发和目标应用的讲解和展示,都是使用含有本专案开发出来的SiC技术模组和封装原型展示品:



汽车与铁路



1.PHEV(插电式混动汽车)或BEV(纯电动汽车)车载充电器



2.HEV(混动汽车)、BEV和FC(燃料电池汽车)隔离式DC-DC转换器



3. 铁路机车智能功率开关(IPS-RA)



4. 航空级智能功率开关(IPS-AA)



纳/ 微电网与航空电子



5.用于奈米/微电网V2G/V2H的高效双向SiC功率转换器



6.航空电子逆变器。



航空电子



7. LiPo介面



8.引擎控制器- 逆变器



该专案执行分为三个主要阶段:规范和用例定义,技术开发,原型展示研发。


WINSIC4AP项目中的SIC技术


制造SiC元件需要使用专用生产线,系因半导体的物理特性(掺杂剂的极低扩散性和晶格的复杂性),以及市场现有芯片的直径尺寸较小(150mm),尤其是离子注入或掺杂剂激活等制程与半导体元件制程使用的常规层不相容。因此,这些特异性需要特殊的集成方案。



使用这些方法将可以实现截止电压高于1200V和1700V的两种SiC功率MOSFET,电流强度为45A,输出电阻小于100微欧姆。



这些元件将采用HiP247新型封装,该封装是专为SiC功率元件而设计,以提升其散热性能。SiC的导热率是矽的三倍。以意法半导体研发的SiC MOSFET为例,即使在摄氏200度以上时,SiC MOSFET也能保持高效能之特性。



WInSiC4AP专案的SiC MOSFET开发主要在2018年进行。图3、图4、图5分别提供元件的输出特性、阈值电压和击穿电压等预测性能。


图3 : SiC SCT30N120中MOSFET在摄氏25度和摄氏200度时的电流输出特性。


在整个温度范围内,输出电阻远低于100 mOhm; 当温度从摄氏25度上升到摄氏200度时,阈值电压值(Vth)降低了600mV,击穿电压(BV)上升了约50V,不难看出,SiC MOSFET性能明显高于矽MOSFET。


图4 : SiC SCT30N120中的MOSFET在摄氏25和200度时的阈值电压


图5 : SiC SCT30N120中MOSFET在摄氏25和200度时的击穿电压特性


从其它表征数据可以看出,随着温度从摄氏25度上升至摄氏200度,开关耗散能量和内部体漏二极体的恢复时间保持不变。



本专案所研发的新元件将带来类似的或更好的性能。Rdson降低是正在开发的SiC MOSFET的关键参数。最低的Rdson值将帮助最终使用者完成原型展示品。


功率模组


WInSiC4AP专案设想透过技术创新开发先进的封装技术,发挥新型SiC元件能够在高温[3,4]下输出大电流的性能优势。



关于封装技术,WInSiC4AP将一方面想在完整封装方案的高温稳健性方面取得突破,另一方面想要控制封装温度变化,最终目标是创造新的可靠性记录:



 可靠性是现有技术水平5倍多; 高温性能同样大幅提升



 能够在摄氏200度或更高温度环境中工作。



专案将针对整合式SiC元件的特性优化封装方法,采用特别是模塑或三维立体封装技术,开发新一代功率模组,如图6所示。


图6 : 新一代功率模组(here 3D)


考量到SiC是一种相对较新的材料,SiC元件的工作温度和输出功率高于矽,有必要在专案内开发介于芯片和封装(前工序和后工序)之间的新方法和优化功率模组。



事实上,为满足本专案开发之目标应用的功率需求,需要在一个功率模组内安装多个SiC元件(> 20个)。功率模组需要经过专门设计,确保元件并联良好,以最大限度地减少导通损耗和寄生电感,开关频率良好(最小20kHz)。



图7所示是本专案使用的一个模组。


图7 : STA5汽车功率模组(最大功率100kW)。


结论


得益于SiC材料的固有特性,新一代功率器件提高了应用能效,同时也提高了工作温度。



从项目的角度看,热动力汽车向混动汽车和最终的电动汽车发展,需要使用高效的先进的电子产品,我们预计碳化矽技术在新车中的应用将会对经济产生积极的影响。


今天是《半导体行业观察》为您分享的第1822期内容,欢迎关注。

推荐阅读

谷歌Project Soli真能颠覆触控行业?

深入解读DARPA电子复兴计划

国产光刻机水平究竟如何?


【福利】深圳国际电子展嘉宾演讲PPT 限时领取!


关注微信公众号 半导体行业观察(ID:icbank),后台回复以下关键词获取更多相关内容

华为 | 中美贸易 | IPO | 财报 | 被动元件 | 开源 | 射频 | 5G | 展会

回复 投稿,看《如何成为“半导体行业观察”的一员 》

回复 搜索,还能轻松找到其他你感兴趣的文章!

关于摩尔精英

摩尔精英是领先的芯片设计加速器,愿景“让中国没有难做的芯片”,业务包括“芯片设计服务、供应链管理、人才服务、孵化服务”,客户覆盖1500家芯片公司和50万工程师。我们致力于提供ASIC设计和Turnkey解决方案,从Spec/FPGA/算法到芯片交付,包括:芯片架构规划、IP选型、前端设计、DFT、验证、物理设计、版图、流片、封装和测试服务等。 自2012年以来,我们的团队一直专注于积累技术能力,帮助客户实现最优芯片性能,并支持Turnkey、NRE、专业咨询和驻场等灵活服务模式。 摩尔精英目前全球员工200人,总部位于上海,在北京、深圳、合肥、重庆、苏州、广州、成都、西安、南京、厦门、新竹和硅谷等地有分支机构。



点击阅读原文,了解摩尔精英

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: TI培训

北京市海淀区知春路23号集成电路设计园量子银座1305 电话:(010)82350740 邮编:100191

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018 EEWORLD.com.cn, Inc. All rights reserved