新型D/A变换器AD9755及其应用

2006-08-24 14:27:42来源: 现代电子技术

   AD9755是Analog Device公司生产的一种超高速双端数据复用、单路输出的14位数模转换芯片。采用CMOS制造工艺,在单个芯片上集成了高品质14-TxDAC+(r)核、一个基准电压源、兼容TTL数字接口电路单元以及PPL时钟变频器等。它的转换速度很高,可以达到300 Ms/s。

  该芯片对外围电路需求少,设计使用灵活方便。AD9755为避免使用复杂、高能耗的ECL电路,而直接利用TTL数字接口来完成300 MHz以下的高性能数摸转换,提供了1条非常便捷的途径。可广泛应用于通信系统信号源、数字信号合成及智能仪器中。其主要特点为:

  (1)转换速率300 Ms/s;

  (2)垂直分辨率14 B;

  (3)工作电压3 V;

  (4)无杂散动态范围 SFDR为73 dBc(Fout=50.2 MHz, fDATA=150 MHz条件下);

  (5)输入建立时间2.0 ns;

  (6)输出建立时间11.0 ns;

  1 AD9755的工作原理

  AD9755主要由两组14位数据输入接口、2-1复接器、DAC锁存器、基准电压、PMOS电流源阵列、分段切换器、PLL电路以及DAC单元等构成,其内部结构如图1所示。采用48针LQFP封装形式,图中2个14位兼容TTL电平数据输入端口,每个端口的最大输入频率是150 MHz,2路数据流在片内锁存后,经2-1复接器合成为1路300 MHz并行数据流,再经DAC锁存器锁存后传输到分段切换部件进行处理。

  AD9755内置了基准电压源,省去了常规高精度DA转换芯片需要外接基准电压器件的麻烦。图1 中的PMOS电流源阵列是为保证全量程输出电流IOUTFS而特别设计的,IOUTFS的大小由内部的基准控制放大器及外电阻RSET决定。芯片内采用了分段结构,即将数据位分成最高5位,中间4位和最低5位,对各段的数据采用不同的数摸转换方法,以保证数摸转换的精度。分段切换部件将接收到的PMOS电流源阵列输出电流,和经DAC锁存器锁存好的14位数据一起进行相关处理后,输送至末级的DAC部件便实现了整个数模转换过程。

  AD9755有使用锁相环(PLL)和不使用锁相环两种工作方式,取决于PLLVDD脚接电源或地。当输入时钟的占空比不是50%时,可使用PLL工作方式。PLL电路内部的VCO可形成100~400 MHz的周期信号,用户通过设定DIV0、DIV1脚来决定该周期信号的分频等级(如表2所示)。PLL在对该分频信号和外部输入时钟进行相位检测后,与锁相环路一起来完成时钟频率的锁定。当不使用锁相环时, DIV0、DIV1脚决定了如表2所示的4种工作状态。在隔行、外倍频方式下,外部时钟应是输入数据率的两倍;在单选1(或2)端口方式(即只完成1路DA变换时),以及在隔行、内倍频方式时外部时钟应设置成与输入数据率相一致。

  AD9755提供了1对互补电流输出IOUTA,IOUTB,它们都是输入数据的函数,可表示为:

  如图1所示,IOUTA,IOUTB,可直接由50 Ω电阻(最好使用有良好温度特性的精密电阻)接到模拟地。最终的差分输出电压值为:(IOUTA-IOUTB)×50。

  2 应用设计

  下面给出一个以AD9755作为数模转换器来产生任意波形的实例。首先在PC机上进行波形编辑,具体方式可以是表页输入、数学表达式或通过鼠标绘制图形。由软件选择正弦波、通用函数或伪随机噪声等,并设定信号的幅度、频率、偏置量,再经快速演算得到波形数据。波形数据经PCI卡写入到两组大容量SRAM器件(IDT71V3558,最高工作频率200 MHz)后,等待上层系统的DA启动命令。

  DA启动后,由ISP芯片(isp2128VE,最高工作频率250 MHz)形成75 MHz的高速地址,驱使双路SRAM数据连续并行输出。这两路输出的数据分别输送至AD9755的数据端口1和数据端口2。由于系统采用了高性能的150 MHz恒温晶振,因此AD9755的工作方式简单设定为不使用锁相环的隔行、外倍频方式,应用电路图如图2所示。

  

  值得指出的是,AD9755有着比较灵活的时钟接入方式。可以是差分接入,也可以是单端接入,甚至可以直接使用VP-P在1 V以上的正弦波,不同的接入方式应使用与之相适应的滤波网络。而对于输出信号要求极为严格的应用场合,为了在输出信号上有效抑制杂散电平和消除相位噪声,时钟同步的处理宜选用翻转速度比较好的高性能器件;以保证信号的边沿陡峭、前后抖动最小。

  图3给出了AD9755的工作时序图。由于输入数据端口锁存及DAC锁存都发生在CLK的上升沿,为了保证足够的数据建立时间和数据的正确性,两个14位数据端口数据的变化最好在CLK的下降沿完成。DAC的变化时间出现在第3个时钟周期上,并有1个tPD小于1ns的传播延迟。不难看出,AD9755的工作时钟正好是数据变化率的2倍,依次完成了2个数据通道的交替数模转换。SRAM组Ⅰ存放的是任意波形的奇数点数据,而SRAM组Ⅱ存放的是波形的偶数点数据,IOUTA或IOUTB上反映的是与原数据顺序一致的DAC。

  由于任意波形的频率成分异常丰富,共模噪声及高次谐波的出现不可避免地会降低输出信号质量。为了改善DA变换的线性度,最大程度地抑制失真与噪声,并提高信号源的负载能力,图2中的输出方法与图1中直接连50Ω到模拟地的方法不同,即引入了宽带运放MAX4100(带宽为500MHz)。

  最后需要强调的是,高速TTL数字电路、高速模拟电路,也应和ECL电路要求一样,通过阻抗匹配来克服信号的过冲震荡。按照传输线理论来设计好带线和微带线,PCB连线的阻抗值与电路板铜箔厚度、板层之间填充介质材料及其高度相关,计算办法参见文献2。选用了多层制板,确定电路板层数的根据是:NL=5log[AnfCLK]。其中,An为数据总线宽度,fCLK为最高工作频率。

参考文献

1 AD9755 14-Bit 300MSPS High Speed TxDAC+(r) D/A Converter DatasheetAnalog Devices Inc

2 Martin O′Hara.EMC at Component and PCB. Level.Newnes, 1997.2

关键字:波形  电压  电流  隔行

编辑:金海 引用地址:http://www.eeworld.com.cn/mndz/sjzh/200608/2248.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
波形
电压
电流
隔行

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved