利用过采样增加SAR ADC的动态范围

2015-12-24 11:16:00来源: EEWORLD
    您使用过任何ADC(Δ-Σ或SAR)并使其工作在过采样模式下吗? 您是否得到了需要的结果? 您遇到过什么问题吗? 
 
    以前有些关于Δ-Σ和SAR(逐次逼近型)ADC概述中,曾讨论过信噪比(SNR)和有效位数(ENOB)相关的过采样技术。 过采样技术最常用于Δ-Σ型ADC,但也可用于SAR ADC。 本文将对此做进一步讨论。 首先是系统级概要介绍: 
 
    用于光谱分析、磁共振成像(MRI)、气相色谱分析、振动、石油/天然气勘探和地震仪的高性能数据采集信号链要求具备高动态范围(DR)性能,同时降低功耗、尺寸和成本。 获得较高动态范围的一种方法,是对转换器过采样,以便精确监控并测量来自传感器微弱和强烈的输入信号。 
 
    还有其它多种方法可以提升ADC动态范围,比如并行运行多个ADC并对输出结果进行数字后期处理以获得平均值,或者使用可编程增益放大器。 然而,有些设计师可能会觉得这些方法太麻烦,或者觉得不能在他们的系统中实现——这主要是因为功耗、尺寸以及成本的限制。 本技术文章重点讨论高吞吐速率、5 MSPS、18/16位精密SAR转换器的过采样,利用直观的ADC样本求均值,提升动态范围性能。 
 
 
过采样描述 
    过采样是一种 高性价比的过程,以大幅高于奈奎斯特频率的速率对输入信号进行采样,提升SNR和分辨率 (ENOB),同时还能降低抗混叠滤波器的要求。 原则上讲,对ADC进行4倍过采样可额外提供1位分辨率,或增加6 dB的动态范围。 提升过采样率(OSR)可降低整体噪声并增加DR,因为过采样为ΔDR = 10log10 (OSR),单位dB。 
 
    类似于Δ-Σ型ADC过采样、高吞吐速率SAR ADC过采样还能改善抗混叠性能,并降低总噪声。 很多情况下,过采样是Δ-Σ型ADC的固有属性,可以顺利实现,并且集成数字滤波器和抽取功能。 然而,Δ-Σ型ADC通常不适合用于输入通道间的快速切换(多路复用)。 如图1所示,Δ-Σ型ADC基本过采样调制器对量化噪声进行整形,使其大部分出现在目标带宽以外,从而增加低频下的整体动态范围。 然后,数字低通滤波器(LPF)过滤目标带宽以外的噪声,抽取器降低输出数据速率,使其回落至奈奎斯特速率。 
 
 
 
图1. 奈奎斯特转换器过采样 
 
5 MSPS、18/16位精密转换器 
    关于其实际工作原理的示例,可参考AD7960和AD7961器件。 这两款器件分别是18/16位ADC,最高转换速率为5 MSPS。 它们使用专有的容性数模转换技术,可降低噪声并改善线性度,同时不会产生延迟或流水线延迟。 由于兼具低RMS噪声和高吞吐速率性能,因而实现了低噪底。 这使得这些ADC适合于过采样应用。 
 
    AD7960/AD7961系列采用1.8 V和5 V电源供电,在自时钟模式下进行转换时,5 MSPS速率的功耗仅为39 mW;而在回波时钟模式下进行转换时,5 MSPS速率的功耗为46.5 mW。 如图2所示,功耗随吞吐速率线性变化,使其非常适合低功耗便携式应用。 
 
 
图2. AD7960功耗与吞吐速率的关系 
 
 
图3. AD7960/AD7961评估设置的原理示意图(未显示所有去耦) 
 
 
 
AD7960/AD7961评估设置 
 
    AD7960/AD7961系列可将反相模拟输入信号(IN+和IN−)的差分电压转换为数字输出信号。 模拟输入IN+和IN−要求共模电压等于基准电压的一半。 低噪声、低功耗放大器AD8031缓冲来自低噪声、低漂移ADR4550的5 V基准电压,还可缓冲AD7960/AD7961的共模输出电压(VCM)。 
 
    低噪声和超低失真ADA4899-1配置为单位增益缓冲器,并以0 V至5 V差分反相(相互之间呈180°反相)驱动AD7960/AD7961的输入。 电路使用+7 V和-2.5 V电源,用于ADA4899-1驱动器的输入,以最大程度降低功耗,实现最佳系统失真性能。 使用EVAL-AD7960FMCZ子板和EVAL-SDP-H1控制器板评估设置简化原理图如图3所示。 
 
    在本文第一部分,我们开始讨论采用SAR ADC来降低噪声、增加动态范围和ENOB, 方法是基于过采样——一般用于低速、高分辨率∆-Σ型ADC——其它器件较少采用。 然后,我们进而讨论了使用评估板和软件的SAR ADC测试结果。 
 
    在第二部分,我们将继续讨论AD7960/AD7961。 我们还将讨论可用的评估板和软件,它们可以进行分析。 我们将看到这些ADC的性能如何。 通过ADC的FFT输出,使用评估板可轻松看出性能。 
 
测量结果 
 
    过采样能力由AD7960/AD7961评估软件对ADC输出样本简单求平均而实现,也就是说,将ADC样本数量相加,然后除以过采样率,从而提升动态范围。 该软件允许用户从配置选项卡的下拉菜单中选择高达256的过采样率,如图4所示。可实现的最大动态范围受限于系统的低频1/f噪声,该噪声在低于20 kSPS的较低输出数据速率下占主导地位。 
 
 
图4. AD7960/AD7961评估软件面板 
 
    从直流到fs/2范围内的信号频谱以及平坦噪声如图5和图6所示,表示可对噪声进行过滤,使其降低至fs/(2 × OSR),以改善动态范围和SNR。 此时,过采样动态范围是峰值信号功率与ADC输出FFT测量的噪声功率之比,测量范围为直流至fs/(2 × OSR),其中fs表示ADC采样速率。 
 
 
图5. AD7960在无输入信号且fIN = 1 kHz时的过采样FFT输出(OSR = 256,REF = 5 V) 

 
 
图6. AD7961在无输入信号且fIN = 1 kHz时的过采样FFT输出(OSR = 256,REF = 5 V) 
 
    如数据手册所述,采用5 V基准电压源时,AD7960和AD7961可分别实现100 dB和96 dB典型动态范围;因此理论上由于256过采样,我们应当看到动态范围增加了24 dB。 
 
    在实际中,这些器件测得的过采样动态范围分别为122 dB和119 dB,在19.53 kSPS输出数据速率下进行256倍过采样时无输入信号,这与理论计算值相比动态范围下降了1 dB到2 dB。 它受到来自信号链组件、输入源和印刷电路板的低频噪声限制。 采用1 kHz满量程正弦波输入信号时,这些器件分别可实现大约111 dB和110 dB的过采样SNR。 图7显示AD7960如何随过采样率增加和输出数据速率下降而实现动态范围的增加。 
 
 
图7. AD7960动态范围与输出数据速率的关系 
 
应用示例 
 
    MRI系统工作频段为1 MHz至100 MHz RF,而计算机断层扫描(CT)和数字X射线工作在1016 Hz至1018 Hz频率范围内,并且需要让病人暴露在电离辐射下,会损害活组织。 MRI梯度控制系统要求极高的动态范围、紧凑的线性度以及从DC到几十kHz的快速响应时间,并且要求在模拟或数字域中,其梯度精确控制到大约1 mA (1 ppm)以内,以增强图像质量。 
 
    使用具有优异规格数据的过采样SAR ADC(比如AD7960)可让设计工程师实现高动态范围,同时满足MRI系统的关键要求。 这类系统要求可在医院或医生办公室中重复、长期稳定测量。 设计工程师应当注意的其它要求是高分辨率、精度、低噪声、快速刷新速率和极低的输出漂移。 
 
 
作者简介 
 
    Maithil Pachchigar是ADI公司精密转换器业务部的一名应用工程师。 他于2010年加入ADI公司,为工业、仪表、医疗和能源行业的客户提供高精度ADC产品技术支持。 自2005年以来,Maithil一直在半导体行业工作,并已发表多篇技术文章。 他于2006年获得圣何塞州立大学电气工程硕士学位,并于2010年获得硅谷大学MBA学位。

关键字:SAR  ADC  采样

编辑:刘东丽 引用地址:http://www.eeworld.com.cn/mndz/article_26574.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
SAR
ADC
采样

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved