datasheet

交直流混合微电网中的安全性

2018-07-27来源: 互联网关键字:交直流混合微电网  安全性

随着分布式发电和储能的大量应用和直流负荷的快速增长,使得直流配电越来越受关注。直流配电系统将会成为未来配电技术的一个重要组成部分。2017年8月26日,国家863课题“高密度分布式能源接入直流混合微电网关键技术”示范工程在浙江上虞投入运行,实现国内首次交直流混合微电网用户侧运行,工程改造或接入分布式光伏总容量1.4MW,2套5kW风力发电系统,1套250kW/800kWh铅酸电池储能系统,1套交直流微电网功率变换与网架系统,系统内交流最高负荷约1.2MW,直流最高负荷约0.9MW。下图为该工程拓扑图。


blob.png


可以看到,该工程采用单层直流母线结构,约0.85MWp光伏系统通过DC/DC变流装置接入微电网直流母线,1.0MWp光伏接入微电网交流母线,约800kWh铅酸电池组维持直流母线电压稳定,保证微电网离网稳定运行。交流母线和直流母线之间采用双向AC/DC换流器连接,直流母线通过DC/DC变流器变换电压给电动汽车充电桩、LED照明、厂房设备等直流负荷进行供电。该示范工程提供了高密度分布式能源接入的新模式,为光伏、风电等新能源安全稳定接入大电网扫清了技术障碍,在国内首次实现交直流混合微电网用户侧的商业化运营,能满足今后电力用户多样化性的需求。


新的技术随之带来的是新的用电安全问题,直流配电系统中运用了大量的电力电子变换设备,电力环境更加复杂,显然在原来交流配电系统中普遍应用的低压保护电器无法继续沿用,以配电系统中的接地故障保护为例,对于采用TN、TT、IT接地方式的交流配电系统,一般采用剩余电流保护。传统电子式AC型剩余电流保护器利用零序互感器检测漏电,零序互感器依据法拉第电磁感应电流,磁通量变化产生感应电流,仅能对交流成分的剩余电流进行保护。


blob.png


与交流配电系统一样,直流配电系统的接地形式也分为TN、TT、IT,由于直流用电设备对供电电源要求有可能是负电源或正电源,因此配电系统中有两条电源线的两线制或增加一条中间导线(M线)的三线配电制。下图3为配电系统常用的TT、IT接地形式的系统简图。


blob.png


针对采用电源端接地的TT、TN接地形式的直流配电系统的接地故障防护,使用剩余电流保护依然是最好的方式,对此IEC发布了 IEC TS 63053:2017《General requirements for residual current protective devices for DC systems》。该直流剩余电流保护装置(DC-RCD)


blob.png


标准规定设定保护阈值最小20mA,最大1A。


在交直流混合电网中直流负载侧,显然普通AC型剩余电流保护器无法完成保护,需要使用DC-RCD进行直流漏电保护,然而目前直流漏电保护还并未推广和市场化,国内也尚无相关标准。实际上,在交直流混合微电网中,漏电成分是非常复杂的,我们来看下ABB对于交直流混合微电网中交流侧接地故障的仿真模型。


blob.png


可以看到,如果交流负载发生绝缘损坏,产生的剩余电流不仅有交流成分,还有直流成分,如果按照惯性思维依然使用AC型漏电保护器在交流负载端进行漏电保护显然是不行的,不仅无法检测直流漏电,甚至叠加的直流漏电会导致检测磁芯预先磁化,导致脱扣值增大,破坏剩余电流保护器的原有的保护功能!


blob.png


针对剩余电流成分复杂的剩余电流保护器,需要使用Type B型剩余电流保护器,对应IEC标准为IEC62423:2009《Type F and type B residual current operated circuit-breakers with and without integral overcurrent protection for household and similar uses》


blob.png


对应国内标准为GB22794:2008《家用和类似用途的不带和带过电流保护的B型剩余电流动作断路器》


B型剩余电流保护器不仅能够对交流剩余电流、脉动直流剩余电流进行保护,此外,还能对1000Hz及以下的正弦交流剩余电流、交流剩余电流叠加平滑直流剩余电流、脉动直流剩余电流叠加平滑剩余电流、两相或多相整流电路产生的脉动直流剩余电流、平滑直流剩余电流确保脱扣,能够非常好的应用在交直流混合微电网中。


Magtron基于iFluxgate技术的SoC芯片整体方案,为B型漏电保护进行了数字化集成,为RCCB从传统的AC型/A型向B型的技术升级,提供了一套高性价比的B型漏电解决方案,为充电设备的用电安全提供了更好的保障。


关键字:交直流混合微电网  安全性

编辑:baixue 引用地址:http://www.eeworld.com.cn/mndz/2018/ic-news072727121.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:东芝新技术提高了模拟电源IC的N通道LDMOS的可靠性
下一篇:Ahoy Systems 将LoRa技术集成到其智能街灯产品中

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利

推荐阅读

安全性、有效性、可靠性,你的电动车充电系统具备吗?

了常见的结构以及如何将安全性,效率和可靠性整合到最佳设计中。 交流充电站 交流充电站的作用是安全地从公用电源(电网)向车辆内部的车载充电器提供电力。 车载充电器可将交流电源转换为直流电源,为车辆电池充电。 由于车辆中的空间和重量限制,车载充电器和交流充电站通常限于较低的功率量(22kW或更低),这意味着缓慢的充电时间(几个小时)。 额定用于交流保护的熔断器用于限制在系统发生故障或故障时可能流过的短路或过载电流量。如果由于绝缘层的磨损或电导体的腐蚀或氧化导致布线和印刷电路板带有超过预期的电流,熔断器也可以保护设备本身免受火灾危险。为了方便和易于维护,一些熔断器和熔断器座具有指示功能,以告知您熔断器是否打开
发表于 2019-04-15
安全性、有效性、可靠性,你的电动车充电系统具备吗?

直流马达的车身电子应用及市场趋势

摘要车内系统的电子产品含量持续成长,原因是市场对自动化、安全性、能耗优化和高质量体验的要求越来越高。在此背景之下,使用直流马达的应用数量也不断上扬。 本文将分析车用直流马达的市场趋势,并说明何以从诊断功能、交换时间的优化、减轻重量和(最重要的一点)提升可靠度各方面来看,固态驱动器(SSD)都是比较好的设计架构。 我们还会特别加以说明,为何在所有专为车用直流马达控制所设计的全集成电路当中,新推出的VIPower™ M0-7 H桥系列能够成为同等级最佳选择。  .  市场趋势预估车用直流马达系统的需求将稳定成长,未来5年的年成长率约在3.1%左右。车身周边的需求主要来于自车门
发表于 2019-04-12
直流马达的车身电子应用及市场趋势

佛罗里达理工大学正利用新型网络攻击提升安全性和弹性

据外媒报道,佛罗里达理工大学(Florida Polytechnic University)的研究人员正利用新型网络攻击,提升自动驾驶汽车和无人飞行汽车(无人机)等信息物理系统(CPS)的安全性和弹性。 该研究项目由佛罗里达理工大学电子工程系助理教授Arman Sargolzaei博士与佛罗里达理工大学计算机科学系助理教授Navid Khoshavi博士以及佛罗里达国际大学(Florida International University)电子工程系教授Kan K Yen博士合作开展。 由于信息物理系统在不断发展,变得越来越复杂,同时也变得越来越易受到攻击。佛罗里达理工大学电子工程助理教授Arman
发表于 2019-04-03

佛罗里达州大学研究新型网络攻击 以提升自动驾驶系统安全性

(图片来源:佛罗里达理工大学官网,图中人物:Arman Sargolzaei博士)据外媒报道,佛罗里达理工大学(Florida Polytechnic University)的研究人员正利用新型网络攻击,提升自动驾驶汽车和无人飞行汽车(无人机)等信息物理系统(CPS)的安全性和弹性。该研究项目由佛罗里达理工大学电子工程系助理教授Arman Sargolzaei博士与佛罗里达理工大学计算机科学系助理教授Navid Khoshavi博士以及佛罗里达国际大学(Florida International University)电子工程系教授Kan K Yen博士合作开展。由于信息物理系统在不断发展,变得越来越复杂,同时也变得越来越易受到
发表于 2019-04-01
佛罗里达州大学研究新型网络攻击 以提升自动驾驶系统安全性

量子加密技术存在缺陷,被破解?

为依据显然是不科学的,也是不负责任的做法。” 韩正甫表示,“夸大其词只会严重误导广大群众的视听,损害学科技术的公信力,百害而无一利。”  文章在网上流传的第二天,上海交通大学金贤敏教授团队便在中国科大上海研究院的微信公众号“墨子沙龙”上发布声明,予以澄清。  金贤敏教授团队表示:“我们的工作并不否认量子密钥分发理论上的绝对安全性,相反,正因为量子加密提供了理论上的绝对安全,使得人类追寻了几千年的绝对安全通信几近最终实现。而我们不断的针对实际系统的物理安全漏洞问题的研究,正是为了这个绝对安全性变得更加可靠。”  可证的安全性已建立起来  韩正甫告诉记者,现有实际量子密钥分发系统主要采用BB84协议,由Bennett
发表于 2019-03-18

研究人员研发增强型SEI 可提高锂金属电池能量密度/性能/安全性

据外媒报道,美国宾夕法尼亚州立大学(Penn State)研究人员表示,利用一种新研发的固态电解质界面膜(SEI),可充电锂金属电池可实现更高的能量密度,更佳性能以及更好的安全性。随着电动汽车、智能手机和无人机等对更高能量密度的锂金属电池的需求增加,SEI的不稳定性成为阻碍锂金属电池发展的关键问题,因为该电池的锂电极表面的一层盐层会将SEI隔离,并且传导锂离子。作为锂金属电池内最不为人所知的部分,SEI的降解促进了树突的形成。树突是一种针状结构,从电池的锂电极中生长出来,会对电池的性能和安全性产生负面影响。机械与化学工程教授Wang表示:“这就是为什么锂金属电池寿命不长的原因,界面膜一生长,电池就会不稳定。在该项目中,我们使用
发表于 2019-03-13
研究人员研发增强型SEI 可提高锂金属电池能量密度/性能/安全性

小广播

电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2019 EEWORLD.com.cn, Inc. All rights reserved