基本电压Vstand生成电路图

2014-02-22 13:26:08来源: 互联网

基本电压Vstand生成电路图

设计的思路是先产生一个分辨率为0.02mV、动态范围为0~2.5V的标准电压信号Vstand,然后通过放大电路将该基本电压放大5倍,就可以得到0~12.5V、分辨率为0.1mV的直流电压,从而实现高精度的电压源。而动态范围为0~20mA、分辨率为0.001mA的高精度电流源则是通过将Vstand接到场效应管的极来控制其漏极电流而得到。因此,该设计中最核心的部分是标准电压信号Vstand的产生。

Vstand的产生
    本设计使用的是双12位DAC LTC1590。Vstand的产生如图1所示。

javascript:window.open(this.src); src="/article/UploadPic/2010-3/201035173843176.jpg" onload="return imgzoom(this,550);" border=undefined>
图1   基本电压信号产生示意图

    D/A1、D/A2分别代表LTC1590中两个独立的、精度都为12位的DAC。参考电压都采用AD780提供的2.5V电压。

    D/A1用来提供粗调电压V1。D/A2输出的电压V2经过衰减200倍后得到精调电压V2’’,中间所加的精密数字电位器起调节V2’’分辨率的作用,最后精调电压与粗调电压相加,便得到标准电压Vstand。

    精密数字电位器采用的是8位256档的AD8400,设K为AD8400的调节比例(0≤K≤1),可以得到:V2‘=V2×K
于是V1分辨率===0.61035(mV)≈0.61 (mV),
V2‘‘分辨率=

≈0.003K(mV) 
则V1= V1分辨率 ×N,  V2‘‘= V2‘‘分辨率×M (N ,M为0~4096的整数)
最终的输出电压V为V1、V2‘’之和放大5倍,于是有:
V=5Vstand=(V1+ V2‘’)×5=(V1分辨率×N+ V2‘‘分辨率×M)×5     
由于V1是粗调电压,解决的是V的动态范围问题,而V的最小分辨率是由细调电压V2‘’决定的,所以:
V的分辨率=V分辨率=5×V2‘‘分辨率=0.003K×5=0.015K(mV)    

    由以上分析可知:使用这种方式得到的V的输出动态范围可以达到0~12.5V,而分辨率约为0.015K mV,若K=1(即不采用AD8400),0.015mV与0.1mV不构成整数倍关系,单纯的由程序控制不能达到0.1mV的分辨率要求。这就是为什么要采用精密数字电位器的原因。

javascript:window.open(this.src); height=260 src="/article/UploadPic/2010-3/201035173844283.jpg" onload="return imgzoom(this,550);" border=undefined>
图2  基本电压Vstand生成电路图
    当K=时,可以得到电压V的分辨率=0.015K =0.01mV 。

    这样就从理论上得到了最后输出的电压源的分辨率可以达到0.01mV,不仅可以满足系统的0.1mV分辨率要求,还留有充足的余量,使得V的输出可以通过对精密数字电位器以及D/A2的软件修正来进行校准,从而避免由于元器件温度漂移、D/A转换非线性误差等对输出造成的影响。

    产生Vstand的电路如图2所示,Vstand在图中是网络标号STAND_VOL所代表的信号。

高精度电压V的产生
    为了保证精度,整个系统的电路中所使用的运算放大器都采用高精度运放OPA2277。
    
    硬件电路搭好之后,通过单片机程序将AD8400的值设为(向AD8400的寄存器写数据),然后通过算法将预输出的电压值分别拆分成D/A1、D/A2各自需要输出的电压,再将值写入LTC1590的寄存器中,便可从输出端得到直流电压V(限于篇幅,Vstand5倍放大得到V的电路图省略)。

高精度电流I的产生
    电流源的实现依然是使用Vstand,其电路如图3所示。

javascript:window.open(this.src); src="/article/UploadPic/2010-3/201035173844199.jpg" onload="return imgzoom(this,550);" border=undefined>
图3  电流源生成电路图

    此处不是利用MOSFET的转移特性,而是采用电压反馈的方式进行电流控制。在场效应管的漏极与源极间加上24V的电压(由系统的其它模块提供,限于篇幅不作说明),与外部所接负载构成回路后,漏极电流便成为电流源的输出电流。设输出电流为I,则U8的引脚3引入的采样电压为10I,经过10倍放大后变为100I引入引脚6,由于5与6处的电压值相等,所以Vstand=100I (Vstand的最大输出为2.5V,而I要求其输出范围为0~20mA,所以100倍的关系比较合适),由于Vstand的分辨率=V2‘‘分辨率=0.002mV,理论上I的分辨率可以达到0.000002mA,完全可以满足预计的0.001mA分辨率要求(Vstand以0.1mV的步进改变即可),于是高精度电流源得以实现。

关键字:电压  Vstand  电路图

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2014/0222/article_24406.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电压
Vstand
电路图

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved