电力系统用单相逆变电源的研制

2014-01-12 17:49:18来源: 互联网

电力系统用单相逆变电源的研制

DevelopmentofSingle-phaseInverse-changePowerSupply(PS)

AppliedtoPowerSystem

摘要

按照电力系统的使用要求,研制正弦波逆变电源,对电源总体方案、主回路、控制电路进行了详细讨论,试验及应用结果表明,该电源性能优良,完全满足使用要求。

关键词:电力逆变电源

Abstract:AccordingtoservicerequirementsofPowersystem,developedsine-waveinverse-changePS,is

discussedindetailoverallscheme,mainreturncircuit,controlcircuitbythepaper.Resultsfrom

testandapplicationindieated,thatthePSwasgoodperformance,fullysatisfiedwithservicerequirements.

Keywords:PowerInverse-changeSP

 

1引言

    随着国内电力工业的不断发展,发电厂、变电站在故障情况下要求不间断电源供电的交流负荷越来越多,对交流供电质量的要求也越来越高,传统的方波逆变器已不能满足应用要求,而UPS由于造价太高,全部采用也有困难。因此,研制一种满足电力系统使用要求的专用逆变电源,具有极大的实用价值。

    本电源研制以电力系统使用为出发点,参照国标《7260-87不间断电源设备》的技术条件,从输出性能方面按UPS要求设计;从系统成套方面,考虑与电力直流系统配套,并且适应中央信号监控的需要。采用IGBT高频逆变,数字分频、锁相、波形瞬时馈值等新技术,试验及应用结果表明,完全满足设计及使用要求。

2系统设计与实现

2.1电源系统方案

电源具有直流和交流两路输入,直流输入为电力系统直流母线,交流输入为工频交流市电。交流市电处于正常状态时,经整流器整流滤波为直流,再经逆变器变换为稳频稳压的交流向负载供电。当市电或整流器发生故障时,直流直接经逆变器变换为稳频稳压交流向负载供电。输入直流电与交流市电整流后的直流电通过二极管隔离。采用此方案不但使交流市电得到稳压净化,而且在交流停电时,交直流供电转换没有延迟,从而使供电质量大为提高。

2.2主电路

    本电源采用交—直—交静止逆变方案,其主电路包括整流器、直流滤波器、逆变器、交流滤波及变压器等,如图2所示。其中,交—直部分采用桥式整流,再经电解电容滤波,得到平稳直流。电源开机时,整流器经起动电阻对电解电容充电,可减小起动电流,实现软起动。起动完毕后,电阻被接触器短接。直流输入接于起动电路之前,也可实现软起动。为使直流系统与其它电气回路隔离,本电源交流输入经过变压器隔电力系统用单相逆变电源的研制。输入变压器变比的选择应保证当交流市电欠压时,整流器输出直流电压仍比直流系统电压高,从而保证交流正常时,直流系统不向负载放电。

    直—交逆变部分采用单相全桥结构,是本电源的核心。逆变器选用IGBT作为开关元件。利用IGBT开关频率较高的优点,采用双极性正弦波脉宽调制方式(SPWM)对逆变器进行控制,将平稳直流变换为脉宽调制输出的交流,该交流基波频率为所需要的电源输出频率。逆变器输出的脉宽调制波经输出LC滤波电路滤波,变压器变压隔离后,输出所要求的正弦波交流电。

为提高电磁兼容性能,在电源的输入和输出端均接有抗干扰滤波器。

2.3IGBT的驱动与保护电路

本电源逆变桥IGBT的驱动与保护电路制成一块线路板,与逆变桥一起组成逆变单元模块。

     M57959是IGBT模块的专用驱动电路,最大可驱动400A/600V的元件。该电路内部具有快速光耦隔离,适合20kHz左右的高频开关运行,并且具有过流保护功能。驱动电路采用+15V/-10V双电源供电,以提高抗干扰能力。

    驱动电路前级为PWM信号处理电路,它将控制电路传送来的单路PWM信号经电压比较器整形反相后,变为两路互差180°的信号,作为上下桥臂IGBT元件的控制信号。该信号经过死区电路,其上升沿被延时3~4μs,以保证上下桥臂导通具有不小于3μs的死区,然后才被送至驱动电路。

    本电源驱动板设有IGBT过流、功率器件过热、直流母线欠压三种保护。IGBT过流保护,由M57959内部保护电路,通过检测IGBT的导通饱和压降完成,过流保护阈值通过在检测回路串接稳压管来调整。单相桥电路四只IGBT元件的四路保护信号,经过与非门,变为一路高电平故障信号,送至故障逻辑电路。功率器件过热保护通过在散热器上安装温度继电器,过热时给出断开接点完成,温度继电器动作值为75℃。直流母线欠压保护电路当电压正常时,检测回路稳压管被击穿开通,从而使与之串联的光耦导通,副边输出低电平;当电压过低时,检测回路稳压管阻断,从而使串联的光耦关断,副边输出故障高电平;保护阈值由稳压管稳压值决定。

    驱动板上的故障逻辑电路先将过流、欠压信号通过D触发器锁存,然后将锁存后的信号与过热信号一起通过门电路综合后,封锁送至驱动模块的PWM脉冲,完成保护。同时,综合后的故障信号与过流、欠压、过热信号被送至控制电路,以完成电源系统监控。

2.4控制电路

该电路以一片16位单片机80C196和波形控制模块为核心组成,如图4所示。其中CPU完成模拟量检测,输出电压有效值控制,故障检测及诊断,与液晶面板进行串行通讯,读取设定参数,交换运行参数和故障信息等功能。波形控制电路完成频率控制,输出电压的波形控制等功能。主要控制环节原理如下:

(1)标准波形产生本电源标准正弦波产生采用

数寻址查表方式,标准正弦数据存于EPROM中,按输出频率时序选通EPROM,再通过D/A转换器将EPROM输出的正弦数字量变为模拟量。该模拟量为正极性,经过运放电路对称下移,电容隔直后,输出标准正弦波信号。标准正弦数据一周波存储量为1k字节。(2)电压控制电压控制采用闭环调节方式,由80C196的控制软件完成。检测电路送来的交流输出电压信号,经过幅值调整、绝对值变换后送至80C196的A/D输入口,经过A/D转换变为数字量,再经有效值运算成为有效值数字反馈量。液晶面板送来的数字给定与数字反馈比较,其偏差进行PI调节,调节器输出的数字信号经D/A转换变为模拟量,送到标准正弦产生电路,作为波形D/A转换器的参考电平,从而改变标准正弦波幅值,使输出电压的有效值维持恒定,实现输出稳压。

(3)波形控制波形控制针对相电压输出,采用带电流内环的双环控制方案,如图5所示。在由两个控制环构成的电压波形控制系统中,电流环是内环,该环的受控对象是滤波电容的电流IC,控制的目的是使滤波电容上的电流能快速准确地跟踪电流指令,电流环可改造被它包围的受控对象,克服直流电压波动△Ud,负载电流IL等系统的扰动对输出电压的影响,从而提高控制系统的快速性,改善输出电压波形品质;电压波形控制环位于电流环之外,该环对输出电压的瞬时值进行控制,使输出电压跟踪输入的标准正弦波。波形控制采用瞬时值反馈,输出电压、滤波电容电流由检测电路检出整形后,直接送入波形环,与标准正弦波比较,经双环调节后产生PWM控制脉冲。滤形控制电路已制成厚膜模块。

    本电源键盘显示电路以一片内带存储器的单片机89C51和实时时钟芯片DS12887为核心组成,完成运行参数显示设定,故障信息显示查询,与主控电路CPU—80C196进行串行通讯交换信息,电源起/停控制,时钟管理等功能。操作显示界面采用20×2字符型液晶屏和6位触摸按键,并设有“电源”、“运行”、“故障”指示灯。

接口电路考虑到电力系统信号监控的要求,将所有运行故障状态均通过发光二极管予以显示,同时变成接点信号输出。接点信号为常开,分为二组,同组内有公共端点,组间彼此电气独立。

2.5检测电路

本系统检测电路包括输出电压检测、输出电流检测、滤波电容电流检测三部分。为提高波形环的控制速度,保证电源品质,与波形环有关的检测元件采用磁平衡式HL传感器。所有检测信号与主控电路均作电气隔离。

2.6控制与驱动电源

本系统控制与驱动电源采用开关电源。开关电源输入挂在逆变直流母线上,输出共6组,其中3组+25V电气上相互独立,供给驱动电路,另3组±15V,+5V共地,供给控制电路和保护电路。

3技术性能与应用结果

按前述原理设计的逆变电源,由生产厂家和电力部门用户共同进行了完整的性能测试,并在变电站投入使用运行。其主要技术性能如下:

(1)交流输入AC220V±15%,50Hz±5%

(2)直流输入

正常工作电压范围DC187~264V

极限工作电压范围DC170~276V

(3)系统输出

额定频率:50Hz

额定电压:220V

电压稳定精度:±2%

频率稳定精度:±0.1%

频率变化率:0.1Hz/s

总谐波含量:<5%(阻性负载测试)

动态电压:

超调<8%(负载0~100%变化时)

稳定时间<0.1s

(4)过载能力:120%10分钟

150%10秒

(5)效率:总效率>80%,(在满载和COS?=0.8情况下)

(6)保护:输入过欠压报

[1] [2]

关键字:电力系统  单相逆变  电源

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2014/0112/article_23531.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电力系统
单相逆变
电源

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved