最详尽32位MCU低功耗设计考量与经典范例参考(三)

2013-12-14 10:48:33来源: 互联网

电源系统的考量

  在多电源系统的应用上,必须考虑低功耗 MCU 的内部电源规划或自动切换,以下以市电/备用电池双电源系统及内建 USB 介面,但平常由电池供电的行动装置来举例说明。

  市电/备用电池双电源系统:MCU 平常由市电经由交直流转换电路供电,当市电断电时,经由连接在备用电源的独立供电管脚进行供电,同时在 MCU 内部进行电源切割,并提供一个可靠的备用电源自动切换开关,确保市电正常供电时备用电池不会持续被消耗。但仔细考虑,其实有两种状况可能发生,一种是备用电池仅供电给部分低耗电的周边电路,例如 32.768K 晶振、RTC 时钟电路、资料备份寄存器等。当市电来时 MCU 将重新启动。另外一种状况是当市电断电时,有可能 MCU 及部分周边电路会被唤醒工作,然后再次进入待机模式。智慧型电表就是此类应用的典型代表。在此种应用中,备用电池需要供电给整颗 MCU,所以电源自动切换开关必须能承受更高的电流,相对成本也较高。

  内建 USB 介面行动装置:此类装置平时由两节电池供电或锂电池供电,工作电压可能为 2.2V 到 3V,当连接到 USB 时,USB介面转由 VBUS 供电。此类低功耗 MCU 如果没有内建 5V 转 3V 的 USB 介面 LDO将会产生下列问题,当连接 USB 时必须由外挂的 LDO 将 USB VBUS 的 5V 电源转换为 3V 电源同时提供给 MCU VDD及 USB 介面电路,但又必须避免 LDO 输出的 3V 电源与离线操作时的电池电源发生冲突,将会需要外加电源管理电路,增加系统成本及复杂度。

  丰富的唤醒机制及快速唤醒时间

  有许多的系统应用场合,需要由外部的单一讯号、键盘或甚至串列通讯信号来激发 MCU 启动整体系统的运作。在未被激发的时候,微控器或甚至大部分的整机需要处于最低耗电的待机状态,以延长电池的寿命。能够在各式需求下被唤醒,也成为微控器的重要特征。MCU 能拥有各式不同的唤醒方式,包括各I/O 可作为激发唤醒的通道,或是由I2C、UART、SPI的通道作为被外界元件触发唤醒,或使用内、外部的超低耗电时钟源,透过 Timer 来计时唤醒。诸多的唤醒机制,只要运用得当,并配合微控器的低耗电操作切换模式,可以使 MCU 几乎时时处于极低功耗的状况。

  配有快速、高效率内核的 MCU,可以在每次唤醒的当下短暂时间里,完成应有的运作与反应,并再次进入深层的低待机模式,以此达到平均耗能下降的目的。但是,如果唤醒后开始执行微指令的时间因为某些因素而拖延的很长,将会使降低总体耗电的目标大打折扣,甚至达不到系统反应的要求。因此,有些 MCU,配合起振时间的改进,逻辑设计的配合,使得唤醒后执行指令的时间至少降到数个微秒之内。

  低功耗类比周边及存储器

  低功耗 MCU 在运行时除了 CPU 内核及被致能的数字周边电路在工作外,越来越多被整合到内部的类比周边电路也是耗电的主要来源。以最简单的 while (1); 执行序来分析运行功耗,共包含下列耗电来源: CPU 内核、时钟振荡器、嵌入式闪存、及LDO 本身的消耗电流。代入以下典型值数据将会更清楚显示各个部分对耗电的影响:

  运行频率 12MHz,MCU 电压 3V,LDO 输出 1.8V 供给 CPU 内核、记忆体及其他数字电路

  低功耗Cortex-M0内核:600 μA

  嵌入式闪存:1.5 mA

  低功耗12MHz 晶震电路:230 μA

  LDO本身的静态消耗电流:70 μA

  总和=0.6+2+0.23+0.07=2.4 mA,平均功耗约 200μA/MHz

  其中耗电比例最高的是嵌入式闪存。如果要运行在更高频率,通常会启动内建的 PLL 提供更高频率的时钟源,在 1.8V 供电的典型 PLL,12MHz 输入输出 48 MHz工作电流约为 1 ~ 2mA,如果不能有效降低 PLL 耗电,对高频工作的低功耗 MCU 将是一大电流负担。

  LDO 的最低静态功耗、32.768 kHz 晶振电路、BOD 及 TN LCD 驱动电路的工作电流,都会大大影响到待机或 RTC 模式的功耗指标。以低功耗应用的热能表为例,RTC 加 LCD 显示的功耗要求在 3V/8μA 以下,这代表可以预估分配给下列电路的电流预算为:LDO静态功耗 0.5μA + 32.768 kHz 晶振及RTC电路 1μA + BOD 1μA + TN LCD 驱动 4μA + LCD 玻璃 1μA + 所有数位电路及类比周边漏电流 0.5μA。这些类比周边除了低耗电要求,同时必须兼具要求批量生产及温度变化时的一致性,这对类比设计人员将是一大挑战。

  快速唤醒这个性能指标也会影响到下列类比周边的稳定时间。当 MCU 从低耗电的待机模式唤醒时,首先要将 LDO 快速切换到高供电模式,启动内部高速 RC 震荡器,使能嵌入式快闪记忆体及 CPU,以上所有电路的稳定时间总和必须在数个微秒内完成,才能符合快速唤醒的需求。

  另外一个容易被忽略的设计是周边电路启动电流,因为相当多的可携式装置采用 CR2032 小型锂电池,瞬间推动力仅有数 mA,尤其使用一段时间瞬间推动力会更低,当 MCU 被唤醒时果周边电路启动电流总和太大时,将会导致 CR2032 输出电压骤降而导致 MCU 重置 (Reset) 或工作不正常。为了避免此问题,除了降低周边电路的启动电流,另一种方法是分时分段启动周边电路,不要集中开启太多耗电的电路。

平均功耗计算范例

  为了让读者更具体了解平均功耗的计算,以新唐科技的低功耗 32位元 MCU Nano 系列及血糖计应用为例,进行使用年限的预估。新唐的 Nano 系列低功耗 32位元 MCU 的 CPU 内核为Cortex-M0,具有200uA/MHz低运行功耗、待机电流仅需1uA、7uS快速唤醒、多重时钟讯号来源及多种工作模式,多达 128KB Flash、16K SRAM 及 12位元 ADC、12位元 DAC、SPI、I2C、I2S、UART、LCD、Touch Key 等丰富周边,符合低功耗、高性能 MCU 应用需求。

  此血糖计范例采用CR2032 230 mAh电池,使用方式、运行功耗及静态功耗如下表所示。

  《国际电子商情》

  使用年限的计算方式请参考下表。量测时间比例、显示时间比例及待机时间比例可由上表求得。例如,量测时间比例为“6 次 x 0.25 分钟 / (60 x 24) 分钟 = 0.1%”。其余时间比例依此类推。量测平均电流为“量测时间比例 x (MCU运行耗电流 +外部量测电路耗电流 +待机(含RTC)耗电流 + LCD 耗电流 + CR2032 自放电)”。显示平均电流为“显示时间比例 x (待机(含RTC)耗电流 + LCD 耗电流 + CR2032 自放电)”。待机平均电流为“待机时间比例 x (待机(含RTC)耗电流 + CR2032 自放电)”。最后计算出使用年限约为 2.77年。由于待机时间比例高达 99%,故血糖计应用待机电流为延长使用年限最重要的参数。

  《国际电子商情》

  结论

  低功耗MCU设计是一个需要多面向考虑的复杂工作,本文仅阐述基本设计理念。开发低功耗MCU产品时,不只要挑战电路设计的高困难度,更要由客户应用的角度考虑性价比,功能最强的不一定是最好的。往往性价比最适合的才能在市场上取得成功。由于智能电网、物联网、远端控制、自动化管理等低功耗高效能应用需求量持续增加,在可以预见的未来,32位元低功耗MCU将逐渐取代8/16位元低功耗MCU,成为市场主流。

关键字:32位  MCU  低功耗

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1214/article_21734.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
32位
MCU
低功耗

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved