利用数字有源分频滤波器,提升高端有源扬声器性能

2013-12-13 15:28:21来源: 互联网

消费者希望连接其家庭娱乐系统的电缆越少越好,因此而产生了对无线有源扬声器的需求。为了通过高端有源扬声器提供最佳的音频质量,我们可以采用各种各样的技术来提升其性能;在这种情况下,数字有源分频器可以发挥重要的作用。

  目前的无线有源扬声器在驱动装置之前的信号路径上有四个元件,即:接收器、DAC、放大器和分频器。接收器可以是运行高效编解码器的蓝牙装置;放大器可能是常规的模拟输入AB类装置,通过其输入端口的高效DAC保证提供较高的音频质量;而信号路径上的最后一个元件是无源分频网络。

  或者,我们也可以采用高效的D类放大器,通过提高效率来直接驱动高、低音扬声器。如果D类放大器带有数字输入端口,则可以利用DSP资源来实施高效的数字分频器,相对于无源分频器来说,数字分频器具备极大的优势。

  有源扬声器的架构

  图1显示的是常规的无线有源扬声器架构。接收器为蓝牙装置,可运行aptXTM等高效的编解码器,以确保最佳的音频性能。为了方便从数字域向模拟域转换,系统需要在放大器输入端口之前配置高效的DAC。前置放大器和功率放大器在模拟域运行,由单一功率放大器同时驱动高、低音扬声器。

图1:常规的无线有源扬声器架构

  图1:常规的无线有源扬声器架构

  提供较高的音频质量需要AB类放大器架构。但是,模拟输入D类放大器却非常节省功率,这一点很有吸引力;如今的闭环模拟输入D类放大器也能够提供很好的音频性能。提高效率也意味着节省功率。

  在这种架构下,无源分频网络提供高通和低通滤波,为高、低音驱动器将音频信号分解为合适的频段。

  超高效数字输入D类放大器的出现,使得另外一种架构也很有吸引力,见图2。在这种架构下,音频信号在放大器功率级输出之前始终停留在数字域,这本身就是一种音频性能优势——无须DAC进行数字模拟转换,消除了转换错误。

图2:使用数字输入D类技术的无线有源扬声器

  图2:使用数字输入D类技术的无线有源扬声器

  为了实现最佳的音频性能,需要选择闭环数字放大器。本例中的平台为CSR直接数字反馈放大器(DDFATM)技术。

  在本架构下,前置放大器和功率放大器的功能通过单一电路实现。尽管每个驱动器需要一个放大器信道,但是每个信道的功率水平都可以根据高、低音的灵敏度进行精确调整。

  在分频器方面,可用的信号处理能力可实现极大的优势。片上DSP方便轻松实施高效的滤波器,滤波器经过配置可完全匹配驱动器特性,因此无需无源组件。

  无源分频器和有源分频器

  图3显示的是典型的无源分频器的实施情况,下文将进一步细致探讨本例。

图3:无源分频器的实施情况

  图3:无源分频器的实施情况

  这种设计为每个驱动器采用了一个常规的二阶滤波器,分频器频率约为2.2kHz。低音阻抗为3.5Ω,高音阻抗为3.2Ω。

  电路由简单的电感器和电容器构成,因为位于功率路径上,所以电感器和电容器必须相对较大。但这样有可能发生效率损失,导致热耗散和性能偏移。随着功率水平的增加,这些效果会进一步恶化,最终导致较高程度的失真。

  尽管电路设计看上去比较简单,但是组件的相互作用却非常复杂,因此难以完全隔离各个驱动器。驱动器的特性随着频率、功率和温度的变化而发生变化,滤波器的响应也直接受此影响。

  分频器通过添加填充电阻器以配合各种不同的驱动器灵敏度,这样会导致热耗散进一步提高。因此必须正确实施,否则过功率的电感器将出现饱和,在高功率下导致失真,甚至失效而毁坏高音扬声器。

而数字有源分频器可以解决上述问题,使得产品更加高效、更加简单。

  有源分频器位于系统的低层数字信号路径上,因此不存在无源设计中的效率损失和热效应问题。滤波器与负载相互隔离,并且滤波器之间也彼此隔离,因此不会因为两者之间的相互作用而导致性能下降。数字增益控制实施起来也很简便,能够满足各种不同的驱动器灵敏度,并且无需填充电阻器。

  数字滤波器不受信号水平的影响,因此效果更为精确、线性和可重复,失真也始终保持在较低的水平。此外还能够很好地控制限幅,因此消除了过载的问题。还可以通过时延功能实现最佳的驱动器时间校准。

  数字放大器的DSP资源占用的开销非常小,因此可以保证提供充分的处理能力。这就意味着能够实施更加高阶和更加复杂的滤波器,以实现更高的性能,而不必增加额外的成本。

  复杂的滤波器设计能够更好地配合扬声器外壳和驱动器特性。而且,还可以设定滤波器的特性集,以便进行性能选择,例如,针对房间条件或音乐类型进行补偿。

  DSP滤波器的性能

  实施有源分频器,必须注意滤波器的规格,以便保证最佳的音频性能。例如,除非采用适当的架构,否则解析误差可能导致噪音水平提高。

  在数字放大器中,滤波器通过一组双二阶分级创建,每个分级提供一个二阶特性,而类型则由大量的系数确定;在本例中,5个24位系数形成一个分级。

  保证系统能够解析和处理所有预期的输入信号,需要考虑计算精度和系数位宽。例如,放大器动态范围目标为116dB时,35位的计算精度可以保证过滤而不产生噪音或失真,系数解析度大于20位。

  数字滤波器的实施

  我们可以利用一种现有的扬声器设计,来说明实施无源和有源滤波器的性能差异。图4显示的是图3的无源分频器与高、低音驱动器连接时的特性。

图4:连接驱动器的无源分频器特性

  图4:连接驱动器的无源分频器特性

  效率较高时,纳入填充电阻器可以使高音信道减幅。采用数字分频器,在配置放大器和滤波器时进行简单的增益调整,即可轻松解决这种差异。这样的调整还可以改善高音信道的信噪比(SNR);因为灵敏度比较高,所以保持较低的噪音水平比较好。

  采用一个双二阶滤波器分级,将系数进行调整以配合无源分频器和驱动器组合,可以复制数字高音单元的实施,见表1。

  表1:高音双二阶滤波器设置
表1:高音双二阶滤波器设置

  欲实现不太平滑的低音特性,需要四个双二阶分级。低通设置为2.2kHz,两个峰值滤波器分别设置为150Hz和1.7kHz以实现较小的偏移,另外一个高通设置为450Hz,见表2。

  表2:低音双二阶滤波器的设置
表2:低音双二阶滤波器的设置

  这些设置的结果见图5显示的特性,非常接近无源分频器。

图5:连接驱动器的无源和有源分频器特性

  图5:连接驱动器的无源和有源分频器特性

关键字:数字有源  分频  滤波器  扬声器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1213/article_21678.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
数字有源
分频
滤波器
扬声器

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved