仪表放大器的特点和电路设计原理

2013-11-09 13:58:27来源: 互联网

仪表放大器的特点和电路设计原理

仪表放大器的特点

高共模抑制比 

共模抑制比(CMRR) 则是差模增益( A d) 与共模增益( Ac) 之比,即:CMRR = 20lg | Ad/ Ac | dB ;仪表放大器具有很高的共模抑制比,CMRR 典型值为70~100 dB 以上。

输入阻抗 

要求仪表放大器必须具有极高的输入阻抗,仪表放大器的同相和反相输入端的阻抗都很高而且相互十分平衡,其典型值为109~1012Ω.

低噪声 

由于仪表放大器必须能够处理非常低的输入电压,因此仪表放大器不能把自身的噪声加到信号上,在1 kHz 条件下,折合到输入端的输入噪声要求小于10 nV/ Hz.

低线性误差 

输入失调和比例系数误差能通过外部的调整来修正,但是线性误差是器件固有缺陷,它不能由外部调整来消除。一个高质量的仪表放大器典型的线性误差为0. 01 % ,有的甚至低于0. 0001 %.

低失调电压和失调电压漂移 

仪表放大器的失调漂移也由输入和输出两部分组成,输入和输出失调电压典型值分别为100μV 和2 mV.

低输入偏置电流和失调电流误差 

双极型输入运算放大器的基极电流,FET 型输入运算放大器的极电流,这个偏置电流流过不平衡的信号源电阻将产生一个失调误差。双极型输入仪表放大器的偏置电流典型值为1 nA~50 pA ;而FET输入的仪表放大器在常温下的偏置电流典型值为50 pA.

充裕的带宽 

仪表放大器为特定的应用提供了足够的带宽,典型的单位增益小信号带宽在 500 kHz~4 MHz 之间。

具有“检测”端和“参考”端 

仪表放大器的独特之处还在于带有“检测”端和“参考”端,允许远距离检测输出电压而内部电阻压降和地线压降( IR) 的影响可减至最小。

仪表放大器电路设计原理

仪表放大器是在三运放电路的基础上发展起来的,由场效应晶体管( FET) 或双极型输入的运算放大器构成。美国ADI 公司第1 个研制成功了单片集成仪表放大器。以AD620为例,其电路原理图如图1 所示。绝对值的校准使用户仅用一个电阻就能对增益进行校准,在G = 100 时准确度为0.15 %. 单片结构和激光晶片修整技术使电路中的元件紧密匹配, 并保证了该电路固有的高性能。该电路输入三级管Q1 和Q2 提供了高精度单差分增益前端, 通过Q1 -A1 - RL 环路和Q2 -A2 - R2 环路的反馈使输入元件Q1,Q2 的集电极电流恒定,由此使输入电压加至外接的增益设置电阻RG 上, 从而产生了一个从输入端到A 1/ A 2 输出端的差分增益, G = ( R1 + R2) / RG +1. 单位增益减法器A3 消除了任何共模信号,并产生一个相对于“参考”端电位的单端输出。RG 的值也决定前置放大级的跨导。为了提高增益,随着RG 值的减少,前置放大器的跨导逐渐增加到相应输入三级管的跨导。这有3 个好处:1) 随着设置增益的增加,开环增益也随之增加,从而降低了增益相对误差;2) 增益带宽(由C1 , C2 和前置放大器跨导决定) 随设置增益增加而增加, 从而优化了频率响应特性;3) 输入电压噪声降至9 nV/Hz ,该值主要由输入部分的集电极电流和基极电阻决定。AD620 的内部增益电阻( R1 和R2) 被精确校准到24. 7 kΩ, 从而使只用一个外接电阻来准确地设定增益。增益公式为G = (49. 4 kΩ/ RG) + 1


image:bk0637610j-1.jpg

即RG = 49.4kΩ/(G - 1)。根据该公式设计者很容易计算出放大器增益电阻RG 的值。

关键字:仪表  放大器  电路设计

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1109/article_20458.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
仪表
放大器
电路设计

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved