在4–20mA电流环中如何使用高压、大电流驱动运算放大器

2013-11-09 13:52:29来源: 互联网

在4–20mA电流环中如何使用高压大电流驱动运算放大器

本文讨论在过程控制工业应用中如何利用高压、大电流驱动运算放大器将电压信号转换为±20mA或4–20mA电流信号。以MAX9943运算放大器为例,给出了试验说明和测试结果。

引言

电流环在过程控制工业系统中的应用已经具有很长历史。通过电流环可以将信息从远端传感器传递到中央处理单元,或从这些中央处理单元传送至远端激励源。4–20mA电流环的应用非常普遍,而有些系统则采用了±20mA电流环。对于低阻负载,采用高压运算放大器提供大电流驱动可以省去外部功率FET,从而简化电路设计

本文讨论在4–20mA电流环中如何使用高压、大电流驱动运算放大器。运算放大器将来自DAC的电压信号转换成±20mA或4–20mA的电流输出,实验中采用了MAX9943运算放大器,文中给出了测试数据。

电流环基础

电流环通常包括传感器、发送器、接收器和ADC或微控制器(图1)。传感器用于测量物理参数(例如压力或温度),提供相应的输出电压;发送器将传感器输出按比例转换成4mA至20mA电流信号;接收器则将4–20mA电流转换为电压信号,ADC或微控制器将接收器的电压输出转换成数字信号。


图1. 简单电流环的主要部件

电流环中,信息通过电流调制信号进行传输。对于4–20mA系统,4mA通常表示传感器的零输出,20mA表示满量程输出。很容易区分环路断路(0mA,故障状态)与传感器的零输出(4mA)。

与电压调制信号相比,电流环从本质上具有更高的抗干扰能力,非常适合嘈杂的工业环境。信号可以长距离传输,信息能够发送到远端或从远端接收。通常情况下,传感器远离系统微控制器所处的控制中心。

比较复杂的系统包括从微控制器或DSP到激励源的另一电流环(图2)。DAC将数字信息转换成模拟电压信号。电流环发送器将DAC输出电压转换成驱动激励源的4–20mA或±20mA电流信号。电网监测系统也存在类似应用,通过成熟算法确定系统的当前状态,预测系统变化方向,并通过控制环路动态调整系统。


图2. 采用另一个电流环控制激励源的复杂系统

利用运算放大器实现VI转换,提供大电流驱动

图3所示电路利用两个运算放大器和少数外部电阻构建了一个简单的VI (电压-电流)转换器。采用±15V供电时,运算放大器(这里为MAX9943)能够向小阻抗负载提供±20mA以上的输出电流。

MAX9943是一款36V运算放大器,具有大电流输出驱动能力。驱动高达1nF的负载电容时保持稳定。该器件可理想用于需要将DAC输出的电压信号按比例转换成4–20mA或±20mA电流信号的工业应用。


图3. 利用VI转换器将DAC输出转换为负载电流,该电路采用两片MAX9943运算放大器。

输入电压VIN与负载电流的关系如式1所示:

VIN = (R2/R1) × RSENSE × RLOAD + VREF (式1)

该电路中,元件取值分别为:
R1 = 1kΩ
R2 = 10kΩ 
RSENSE = 12.5Ω
RLOAD = 600Ω

典型负载在几百欧姆量级。而发生对地短路故障,或者为了长距离信号传输而在接收器端降低电压负荷时,负载阻抗将明显减小。

VREF可以与DAC使用相同的基准电压。这种情况下,所有电压(VIN)与VREF成比例,并消除了由于VREF变动引起的误差。

从±2.5V产生±20mA电流驱动

图3所示电路亦可用来产生±20mA电流驱动。当VREF = 0V时,-2.5V至+2.5V的输入范围产生标称±20mA的电流输出,如图4所示。

输入电压(VIN)和“正向”运算放大器输出电压(V1)之间的关系如下:

VIN = (R2/R1) × (1 - α/β) × V1 + VREF × (1 – (R2/R1) × 1/(β × (R2 + R1))) (式2)

式中:
α = (1/RSENSE) + R2/(R1 × (R1 + R2)) (式3)

β = 1/RSENSE + (1/R1) + 1/RLOAD (式4)

在式2和式3中代入元件值:
V1 = 4.876 × VIN - 4.872 × VREF (式5)

式5中的关系式有助于避免输出器件饱和。实际上,当VIN = +2.5V时,下端运算放大器的输出(V1)达到12.2V左右。如果输入电压超过2.5V,最终输出器件将达到其饱和点,输出电压不再增大。图4曲线变得平坦,与理想特性曲线不一致。反相端输入低于-2.5V时,将出现类似结果。


图4. ±2.5V输入电压范围可产生±20mA输出电流。蓝色曲线为理想的增益曲线;红色曲线为实测数据。VCC= +15V;VEE = -15V。

图4数据说明,当源出、吸入电流达到大约±21.5mA时,相当于±2.68V输入和正向(下端)运算放大器输出达到±13V,MAX9943仍然能够工作在线性范围。因为MAX9943的输出电压能够非常接近负电源电压,实际负向电流可以达到较大幅度。该器件的正向输出摆幅限制在正电源电压的2V以内(2V电压值取决于负载,给出的是最差工作条件下的技术指标与工艺、温度的关系曲线)。

有些应用需要更大的输出电流,以满足设计裕量的需求或为校准保留一定空间。对于这类应用,图3电路可采用±18V双电源(代替±15V)供电。此时,运算放大器能够驱动最大±24mA (对应于±3V输入)的电流,并保持工作在线性区域,如图5所示。


图5. ±3V输入电压范围可产生±24mA输出电流。蓝色曲线为理想增益曲线;红色曲线为实测数据。VCC = +18V;VEE = -18V。

从0至2.5V输入范围产生4–20mA电流驱动

由上述式5,当VREF = -0.25V、输入范围介于0V至+2.5V时能够产生2mA至22mA的电流输出(图6)。通常在4–20mA电流环中,设计人员希望动态范围具有一定的附加“空间” (例如:2mA至22mA),以便用于软件校准。如果需要更大电流,MAX9943可以采用±18V双电源供电,如上所述。


图6. 通过0V至2.5V输入电压范围产生4–20mA输出电流。蓝色曲线为理想增益曲线;红色曲线为实测数据。VCC = +15V;VEE = -15V。

结论

电流环被广泛用于需要将信息从远端传感器传输到中央处理单元,或从中心单元传输到远端激励源的工业应用。

实验证明,MAX9943运算放大器非常适合将传感器或DAC输出的电压信号转换成4–20mA或±20mA电流的控制环应用。MAX9943在整个温度范围内都具有精密的大电流驱动能力。驱动高达1nF的容性负载时能够保持稳定工作,而长距离传输中经常会遇到较大的容性负载。

关键字:电流环  高压  大电流  驱动  运算放大器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1109/article_20453.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电流环
高压
大电流
驱动
运算放大器

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved