电流负反馈放大器的原理分析与CAA计算机辅助分析设计

2013-11-09 11:43:31来源: 互联网

电流负反馈放大器的原理分析与CAA计算机辅助分析设计

自从1970年Otala博士提出关于晶体管放大器瞬态互调(TIM)失真的理论,传统的电压负反馈技术在高保真音频放大器的设计中就陷入了一种矛盾。一方面,为了降低瞬态互调失真,设计师们减少了负反馈量,甚至采用无大环负反馈设计;另一方面,非线性失真却得不到有效的抑制。虽然采用优质元件和复杂的电路以提高放大器的开环特性,从而减小对负反馈的依赖,但代价也是不小的。近年来,一些音频设计师把目光投向了在视频运算放大器中得以广泛应用的电流负反馈技术,并在高保真音频放大器的设计中取得了成功。如今,像著名的金嗓子公司、马兰士公司、先锋公司、AKAI公司等都纷纷推出采用电流负反馈技术的放大器。国内也有个别厂家推出电流负反馈放大器,可惜仅局限于对国外某款名机的仿制。下面,笔者将对电流负反馈放大器的基本原理进行分析,并在此基础上,结合计算机辅助分析软件SPICE推出一款200W甲乙类电流负反馈放大器。

1 基本原理分析

1.1 电流负反馈放大器的开环特性
  关于电流负反馈放大器的设想,早在30年代就有人提出,但进入实用和普及阶段则是80年代的事了。图1是电流负反馈放大器的基本结构。为了便于分析,忽略输入射极跟随器,并仿照差分输入电压负反馈放大器的“半电路分析”方法,以中心水平线为对称轴将电流负反馈放大器简化为如图2所示的分析用的电路,RF与RG组成反馈网络。可以说,这个普通而熟悉的电路就是现代电流负反馈放大器的雏形。为了讨论方便,进一步把图2简化成图3所示的电路,其中RE为RF与RG的并联值,RL为RF与RG的串联值。这样该电路的开环DC增益可以表达如下:

t12-1.gif (2989 bytes)

图1 电流负反馈放大器的基本结构

t13-1.gif (2206 bytes)

图2 电流负反馈放大器简化电路

t13-2.gif (2550 bytes)

图3 电流负反馈放大器简化电路

AVDC=(R1/RE)×(R3/R2)×1  (1)

  显然,其开环增益和反馈网络有关,换句话说,开环增益是随闭环增益的变化而变化的。这是电流负反馈放大器一个最重要的基本特征。而在当时为了解决这个问题,工程师们加入一只缓冲用三极管BG4将输入级BG1和反馈网络RF,RG隔离,见图4。由三极管BG4的动态发射极电阻替代了图3中的RE,因此开环增益和反馈网络无关,开环增益不随闭环增益的变化而变化。这个电路就是差分输入电压负反馈放大器的标准模板。这里,还可以看到电流负反馈放大器和电压负反馈放大器的一些其他基本差别,如反馈网络都连到反相输入端,电流负反馈放大器是低阻抗端,而电压负反馈放大器则是高阻抗端;由于BG4的加入,差分输入电压负反馈放大器具有平衡的两个输入端,因而有低的失调电压和相等的输入偏置电流等。

t13-3.gif (2596 bytes)

图4 电流负反馈放大器简化电路

  现在,再回到电流负反馈放大器的分析上。由图3可以计算开环极点:

ωP≈1/[R1×(R3/R2)×CT]  (2)

补偿电容CT可以是BG2的固有的基极-集电极电容或一个外加的补偿电容,(2)式成立是假定BG1的动态发射极电阻可以忽略,并且R2包含BG2的动态发射极电阻。设RT=(R1×R3)/R2,RT定义为传输电阻。则(1),(2)式简化为:

AVDC=RT/RE  (3)
ωP=1/(RT×CT) (4)

这样,电流负反馈放大器的开环增益可以用下式表达:

AV=(RT/RE)×[1/(1+jω/ωP)]
=(RT/RE)×[1/(1+jωRT×CT)? (5)

将(5)式等式两边除以反馈网络参数RE,就得到一个只与电流负反馈放大器内部特性有关的参数,它更直观真实地描述了电流负反馈放大器的开环特性,这就是开环传输阻抗ZT,单位Ω。RT定义为开环传输电阻,CT为开环传输电容。

ZT= AV/RE=RT×1/(1+jωRT×CT)? (6)

由于输出电压等于反相低阻抗输入端(BG1的发射极)的电流与开环传输阻抗ZT的乘积,所以就有了“电流负反馈”名称的来由。 
  图5是电流负反馈放大器的开环传输阻抗曲线。

t13-4.gif (1480 bytes)

图5 电流负反馈放大器的开环传输阻抗曲线

1.2 电流负反馈放大器的闭环特性
  用经典的分析方法,电流负反馈放大器的闭环响应可以描述为下式:

ACL=AV/(1+AV×β)  (7)

反馈系数β=RG/(RF+RG)
将开环增益表达式(5)带入(7)式可得:

AC={(RT/RE)×[1/(1+jωRT×CT)]}/{(RT/RF)×
[(1+RF/RT+jωRF×CT)/(1+jωRT×CT)]}

由于RT远大于RF(RT典型值>100kΩ,RF典型值<5kΩ),上式可以简化为:

ACL=(RF/RE)×[1/(1+jωRF×CT)]
=[(RF+RG)/RG]× [1/(1+jωRF×CT)? (8)

  可见,电流负反馈放大器闭环增益的直流值由反馈网络RF,RG决定,闭环极点由RF与CT决定。只要RF不变,闭环带宽就基本不变,此时改变RG就可以改变闭环增益,因此可以得到电流负反馈放大器的闭环增益和闭环带宽无关的重要特性。实际上,只要RF不变,在闭环增益改变的同时,开环增益也在改变,以确保闭环带宽基本不变。图6反映了开环增益随闭环增益变化的这种特性。

t13-5.gif (2219 bytes)

图6 开环增益随闭环增益变化的特性曲线

1.3 电流负反馈放大器在音频应用上的优势
  首先,电流负反馈放大器可以较好地兼顾非线性失真与瞬态互调失真这两项指标。众所周知,环路增益是衡量一个放大器保持原始信号保真度的重要指标。现代的电压负反馈放大器为了减小瞬态互调失真,不得不减小负反馈深度,从而降低了环路增益,导致闭环增益误差增大,非线性失真增大。而电流负反馈放大器由于有闭环增益和闭环带宽无关的重要特性,只要反馈电阻RF保持不变,不论闭环增益如何变化,环路增益都保持不变,从图6也可以看到,环路增益即开环增益曲线以下与闭环增益曲线以上所包围的面积,虽然闭环增益改变了,但环路增益不变。因此,可以根据需要确定闭环增益而不必考虑是否会影响到闭环增益误差和非线性失真。其次,电流负反馈放大器的开环传输阻抗的主极点频率比电压负反馈放大器高,高频时的环路增益相对地大于电压负反馈放大器。当信号频率增加时电流负反馈放大器的闭环增益误差就较小,高频信号的非线性失真也小。

表1 OPA603和OPA621的失真特性

失真 增益 闭环增益ACL=2 闭环增益ACL=10
OPA603 OPA621 OPA603 OPA621
二次谐波失真 -65dB -68dB -63dB -50dB
三次谐波失真 -78dB <-90db> -62dB -70dB
等效BIT数 10.5 11 10 9
 

  表1是电流负反馈运放OPA603和电压负反馈运放OPA621在不同负反馈深度(闭环增益)条件下的失真特性,OPA603在闭环增益为2和10时,谐波失真变化很小,OPA621在闭环增益增大时,谐波失真明显变大,等效BIT数由11BIT降为8 BIT。再次,电压负反馈放大器有GBW的限制,减小反馈深度就要牺牲带宽指标,而电流负反馈放大器的闭环带宽与闭环增益无关。最后,电流负反馈放大器的转换速率一般比电压负反馈放大器要好,因为电流负反馈放大器的转换速率主要是由输入信号幅度和边缘决定的,理论上没有转换速率的限制,而且对所有的阶跃输入信号都产生理想的单极点指数输出响应。图7是电流负反馈运放LT1352的转换速率与输入阶跃信号幅度的关系,可见,转换速率是随输入信号幅度呈线性增长的。电压负反馈放大器的转换速率是由电路内部决定的与输入信号无关的定值。因而在大信号输入时,电流负反馈放大器的转换速率比电压负反馈放大器高得多,确保了电流负反馈放大器在大信号输出时的功率带宽远大于一般电压负反馈放大器,获得了大幅度高频信号的低失真重放。由此可以得出,在闭环增益较高、反馈深度较浅、功率带宽越来越宽的现代音频放大器的应用中,电流负反馈放大器比电压负反馈放大器有利得多。

t14-1.gif (4742 bytes)

图7 LT1352的转换速率与输入信号幅度的关系

2 200W甲乙类电流负反馈放大器的CAA计算机辅助分析设计

  由于电流负反馈放大器的设计比较复杂,很难用传统的数字解析法完成,因此用SPICE软件对电路进行计算机辅助分析设计。整个设计分为开环设计、闭环设计和动态输入信号的验证设计。

2.1 开环设计(包括直流工作点计算)
  采用经典的电流负反馈放大器的拓扑结构,如图8所示。分为交叉耦合输入级、I/V变换、输出缓冲器三大部分,中点零电位主要由输入级元件的对称性保证,再加上运放组成的DC伺服电路,确保中点零电位的稳定。为了提高能量速度,交叉耦合输入级没有采用恒流源,输入级电流为3.0mA,比较大,主要是提高在正、负两个方向上转换速率的极限。I/V变换没有采用恒流源有源负载,而是用电阻检测输入缓冲放大级输出端的电流,两级推挽射极接地电路进行电压放大以提供足够的增益。输出缓冲器的静态电流设置为0.545A,由两对大功率管分担,8Ω负载上的甲类输出功率约5W。电路设计描述文件如下:

点击看大图
点击看大图

图8 开环仿真电路图

*SPICE_NET*
*INCLUDE \H-BB\\BJT.LIB
*INCLUDE DEVICE.LIB
*INCLUDE NONLIN.LIB
.AC DEC 20 5HZ 200000KHZ
*ALIAS V(21)=VOUT
*ALIAS V(36)=V-
*ALIAS I(V8)=I-
.PRINT AC V(21) VP(21) V(36) VP(36)

[1] [2]

关键字:电流负反馈  放大器  原理分析  CAA计算机

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1109/article_20442.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
电流负反馈
放大器
原理分析
CAA计算机

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved