数字基带芯片揭秘:高灵敏度接收机跟踪环路设计

2013-10-16 08:42:28来源: 互联网

摘要:基于GPS/BD兼容高灵敏度导航产品开发和产业化项目,对经典载波跟踪环进行修改,设计实现了高灵敏度跟踪环路。将传统的单点积分数据,转化成一列数据,对该数据进行FFT变换后,可提高载波频率的估计精度,从而提高系统的跟踪灵敏度。并对高灵敏度跟踪环路进行仿真分析,证明高灵敏跟踪环路对弱信号的跟踪能力。

  0 引言

  全球卫星导航系统GNSS(Global Navigation Satel-lite System)在政治、经济以及军事等多个领域都具有重要意义。从飞机、汽车到个人手持通信终端,都能看到GNSS定位技术,GNSS系统在民用领域应用十分广泛,对国民经济建设也起到了重要作用。目前全球已经使用和公开研制的GNSS 系统一共有以下四个,美国的GPS 导航系统、俄罗斯的GLONASS 导航系统、欧盟的GALILEO导航系统和中国的北斗导航系统。

  随着技术的进步、应用需求的增加,卫星导航以全天候、自动化、高效率、高精度等显着特点及其所独具的定位导航、精密测量、授时校频等多方面的强大功能,已涉足众多的应用领域,使卫星导航成为了继蜂窝移动通信和互联网之后的全球第三个IT经济新增长点。随着我国自主卫星导航系统北斗系统建设的全面展开,北斗的应用将迅速推广,结合卫星导航与通信、多媒体等的多方面需求。面向大众及行业的导航应用,研制高性能多模高灵敏度导航基带芯片及多模导航基带IP 核,将对提高我国核心导航产品技术水平和市场占有率,为重大专项典型示范项目提供自主核心芯片和解决方案。

  天线接收到的GPS 信号功率一般为-130 dBm,但在室内、森林、城市等复杂环境下,GPS信号验证衰减可达20~30 dB,此时普通GPS 接收机不能实现正确的捕获和跟踪。本文基于了高灵敏度数字基带芯片的研究背景,对经典载波跟踪环进行修改,设计实现了高灵敏度跟踪环路设计,高灵敏跟踪环路接收机实现了正确的捕获和跟踪。

  1 自主跟踪环路设计

  1.1 自主跟踪环路设计

  卫星信号由3部分组成:导航电文、伪随机扩频(C/A)码和载波。基带信号处理器同步过程包括捕获和跟踪。捕获是一个对卫星和接收机相对运动引起的载波多普勒频偏和C/A 码相位偏移进行粗略估计的二维搜索过程,捕获完成后这两个参数用来初始化跟踪环路。

  跟踪环路进行了精确地相位同步和跟踪,从而实现了载波的剥离和C/A码的剥离,最终得到了导航电文用于导航解算。

  自主捕获通道所得结果中的卫星号、扩频码相位这些信息输入至卫星扩频码产生器,启动了扩频码序列的产生,包括超前0.5 码片、即时码片和滞后0.5 码片共3 路序列,然后与本地伪码信号进行相关处理,通过扩频码跟踪环路与载波跟踪环路的有关运算,使载波环路和码环路保持了锁定状态。程序结构如图1所示。

  

  跟踪环路包括了载波跟踪环和码跟踪环,两个环路相互影响,只有两个环路同时锁定时,才能解调出导航电文。载波跟踪环路对环境噪声、晶振的相位噪声和动态应力等更加敏感,比码跟踪环路更容易失锁,因此成为接收机的关键和设计难点。

  1.2 码跟踪环路

  由于码跟踪环DDLL算法可用软件实现,并能保证伪码延时精确到1%个码片内。因此,自主码跟踪环采用了此方法进行伪码相位跟踪的,即利用本地码发生器产生了相位超前、滞后信号并与输入的信号相关,比较两支路结果以获取码相位误差信号来控制码DCO并产生与输入码相位一致的本地码信号。

  码环鉴相器的输入为同相/正交支路码相位超前/滞后的相关信号。码相关发生时环路进入了跟踪状态,假定d = 2δ,d 为相位超前与滞后支路的相位间隔,则超前一滞后型非相干DDLL环的控制量B(k) 可由式(1)获得:

  

  分别表示鉴相器的增益系数和鉴相特性函数。GPS C/A码的码长为L = 1 023,BD C/A码的码长为L = 2 046,码元宽度为tc =20 ms,其相关函数为:

  

  由此可得鉴相器的鉴相特性函数:

  

  鉴相特性函数为相关间隔与码相位偏差的函数。

  若定义(-δ,δ) 为鉴相线性范围,鉴相特性函数在ε = 0 处的斜率D′(ε,δ) 为DDLL环的鉴相增益,Dmax (ε,δ) 为跟踪牵引范围。

  1.3 载波跟踪环路设计

  载波的同步包括了捕获和跟踪两个过程,载波捕获即多普勒频移的粗略估计已由快捕通道的捕获算法完成,而精确的载波相位及多普勒频移跟踪则通过反馈跟踪控制环路实现。本方案采用一种非相干的FLL环--叉积自动频率跟踪环(CPAFC)加锁相跟踪算法作为载波跟踪方法。在通过捕获算法进行伪码捕获后,载波多普勒频移范围被“牵引”到了500 Hz,为了使多普勒频移进入叉积鉴频器的线性工作范围,算法上首先采用叉积鉴频器将频率从几百赫兹降到几赫兹,然后利用锁相环进行精确的频率跟踪。

  叉积自动频率跟踪环鉴频算法为:

  

  假定连续量测过程中调制数据位不变,即有D(k)D(k - 1) = 1.在预检积分时间内载体机动造成的频率偏移可视为恒值,则有Δfd ≡ Δfd (k) = Δfd (k - 1) 成立。而由于Φk = Δfd (k) - tk + Φ0 ,则:

  

  输出与单位时间间隔内的相位变化成正比,可以用此输出量控制载波DCO 以达到频率跟踪的目的。该算法上要求在同一数据位内计算,在信噪比较低的情况下仍能取得较好的性能[7]。

  设定相干积分时间为20 ms,载波固定频偏为2 Hz,环路带宽为10 Hz,当输入信号由-140 dBm 减弱至-160 dBm 时的仿真效果图如图2~图5所示。

  由图2~图5 可知,当输入信号功率小于-150 dBm时,采用传统的环路跟踪策略已经不能实现稳定的跟踪,必须要设计新的跟踪方法。

  

  

  2 高灵敏的跟踪环路设计

  在现有多款GPS、BD、GLONASS接收机基带算法和电路基础上,利用GNSS 研发平台和开发板,进一步试验和验证提高接收机自主灵敏度的方法。采用共用式匹配滤波器和相关器等灵活高效的电路结构,匹配滤波器用于搜索和捕获,相关器用于跟踪。不同通道、GPS和北斗二号分时共用同一匹配滤波器和相关器,以电路速度换取电路规模等手段,提高了系统的处理能力,从而达到了提高捕捉灵敏度,减小启动时间,减少伪捕捉现象,减小电路规模等目的。

  算法上,采用了相干积分与非相干积分相结合的办法实现弱信号捕捉与跟踪。相干积分的效率高于非相干积分,但相干积分受比特符号反转的限制,且会减小频率搜索的步长,相干积分时间难以很长,所以只能采用相干积分与非相干积分相结合的办法,可将总的积分时间增加到秒级,以达到高灵敏度的目的。

  依照如图6所示将经典载波跟踪环做出修改,核心思想是将传统的单点积分数据转化成一列数据,对该数据进行FFT变换后,可提高载波频率的估计精度,从而提高系统的跟踪灵敏度,基本达到了高灵敏度跟踪环路设计的要求。设定相干积分时间PIT=20 ms,预设频偏为20 Hz,当输入信号功率为-150~-160 dBm 时的仿真图如图8~图9所示。

  

  

  

  由图7~图9可知,在弱信号情况下,环路依旧具备较强的频率跟踪能力。

  3 结语

  本文基于数字基带芯片的研究背景,设计并实现了GPS和BD2载波跟踪环路设计。提供了一种高灵敏的载波跟踪环路的仿真与实现,是高灵敏度接收机实现的核心技术。

关键字:高灵敏度  接收机跟踪  环路设计

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1016/article_20115.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
高灵敏度
接收机跟踪
环路设计

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved