后锂电池时代:哪种电池技术会脱颖而出(三)

2013-10-14 13:11:02来源: 互联网
意在高压化的丰田

  钠离子充电电池在制成单元时与锂离子充电电池相比存在电压低的课题。因此,业界还出现了提高电压的动向。丰田在本届电池研讨会上就电位为4V以上的含钠过渡金属磷酸盐发表了演讲(图7)注2)。该公司就Na4M3(PO4)2P2O7,以镍、钴、锰比较了M过渡金属部分。结果显示,采用钴的Na4Co3(PO4)2P2O7的容量最高,为95mAh/g。而且,不但确保了4V以上的放电,充放电100次后也没有出现容量劣化。

  图7:具备4V以上电位的Na4Co3(PO4)2P2O7

  丰田在电池研讨会上就具备4V以上电位的Na4Co3(PO4)2P2O7发表了演讲(a,b)。

  注2) 丰田以“钠电池用新正极活性物质Na4M3(PO4)2P2O7〔M=Ni,Co,Mn〕的电气化学特性”为题发表了演讲[演讲序号:2E07]。

  不仅是正极材料的开发,钠离子充电电池的研究范围在不断扩大。在本届电池研讨会上,因采用锂离子的全固体电池研究而闻名的大阪府立大学发布了钠离子全固体电池的研究成果注3)。固体电解质采用钠离子导电率为10-4S/cm的Na3PS4。在该固体电解质的基础之上采用钛硫(TiS)正极和钠锡(Na-Sn)合金负极的全固体电池在室温下使用时,虽然首次的不可逆容量较高,但第二次以后就可以稳定地反复充电了(图8)。

  图8:钠离子全固体电池亮相

  大阪府立大学在电池研讨会上就固体电解质采用Na3PS4的全固体电池发表了演讲(a,b)。与初始放电容量相比,第二次以后的放电容量大幅降低,不过第二次以后表现出了稳定的循环特性(c)。

  注3) 大阪府立大学以“采用Na3PS4固体电解质的全固体钠硫电池试制”为题发表了演讲[演讲序号:2E21]。

  另外,还试制了正极采用高容量硫(S)的电池。S和放电生成物Na2S是绝缘体,因此将S或Na2S与导电材料乙炔黑和固体电解质以1:1:2的重量比进行了混合。由此确认,1000mAh/g以上的高容量全固体钠硫电池可以在室温下正常工作。

  固体电解质和负极取得进展

  虽然采用钠离子的全固体电池也已经逐渐展开研究,但采用锂离子的全固体电池的研究更加活跃。

  在全固体电池的研究中,如何提高表示固体电解质锂的扩散速度的锂离子导电率是个重要课题。在最近的研究中,东京工业大学、丰田、高能加速研究机构的研发小组发现了锂离子导电率与有机电解液相当的物质。主导研究的是东京工业大学研究生院综合理工学研究科物质电子化学专业的菅野了次教授。

  菅野等人发表的是硫化物类固体电解质的一种——Li10GeP2S12。锂离子导电率在室温(27℃)下非常高,为1.2×10-2S/cm。丰田试制了采用该固体电解质的全固体电池,并于2012年10月公开。丰田证实“实现了原产品5倍”的输出密度。

  在本届电池研讨会上,以丰田为首,出光兴产、三井金属矿业、村田制作所、三星横滨研究所及住友化学等也发表了论文。

  丰田与大阪府立大学的辰巳砂研究室报告了可提高全固体电池寿命的研究成果 注4)。通过采用7Li2O·68Li2S·25P2S5,与该公司此前推进研究的75Li2S·25P2S5相比,实现了比较高的容量维持率。双方试制了采用不同固体电解质的全固体电池,以最大4V电压进行充电后,在60℃下保存了1个月,采用7Li2O·68Li2S·25P2S5的电池的反应电阻没有升高,约为当初的0.9倍,维持了86%的放电容量。而采用75Li2S·25P2S5的电池的反应电阻上升至当初的约2.0倍,放电容量维持率降到72%(图9)。

  图9:具备高容量维持率的固体电解质

  丰田确认,作为全固体电池的固体电解质,具备高耐水性的75Li2S·25P2S5在60℃的保存试验中,内部抵抗难以上升(a)。试制充电电池测量容量变化时发现,1个月后保持了86%的容量(b)。(图由《日经电子》根据丰田的资料制作)

  注4) 丰田与大阪府立大学以“Li 2OLi2S-P2S5类玻璃固体电解质的电池特性”为题发表了演讲[演讲序号:2H15]。

  据丰田介绍,“7 Li 2O·68Li2S·25P2S5耐水性高,活性物质和固体电解质界面能够稳定。因此可抑制硫化氢的产生量,为电池的长寿命化做出了贡献”。此次的实验是在60℃下实施的,由此可见,在高温时也能抑制电池劣化。

  负极材料采用金属磷化物

  固体电解质与正极材料的组合备受关注的全固体电池还提出了高容量负极候选。就金属磷化物发表演讲的是大阪府立大学和出光兴产的研发小组注5)。目前作为高容量负极受到关注的硅和锡虽然容量高,但与锂制成合金时体积变化较大,难以延长寿命。

  注5) 大阪府立大学与出光兴产以“全固体锂充电电池的SnNa4PS4PNa3PS4负极微细组织观察”为题发表了演讲[演讲序号:2H28]。

  而金属磷化物的特点是能形成金属微粒子和Li3P。Li3P具有矩阵构造,有望抑制锂与金属微粒子的合金化反应造成的体积变化。另外,Li3P因锂离子导电性高,仅利用活性物质即可构成负极的电极部分。

  此次发表的论文中的负极材料采用了磷化锡(Sn4P3)。由该负极材料与Li2S-P2S5类固体电解质及锂铟合金正极构成的试验单元,即使负极电极中不含电解质和导电添加剂也能作为充电电池使用,具备950mAh/g的初期放电量(图10)。与采用Sn4P3、固体电解质和乙炔黑以40:60:6重量比混合的电极复合体的单元相比,电极单位重量的容量约为2倍。

  图10:具备导电性的负极材料

  大阪府立大学发表的全固体电池采用具备导电性的Sn4P3。仅利用Sn4P3就可以作为全固体电池使用(a)。初次放电后和充电后仍与固体电解质形成了良好的界面(b~d)。

  此外,观察充放电前以及初次放电后和充电后的电极发现,虽然出现了100μm级的裂纹,但Sn4P3与固体电解质之间保持了出色的接触界面。大阪府立大学认为,这要得益于Li2S-P2S5类固体电解质的柔软性。

关键字:锂电池

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/1014/article_19964.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
锂电池

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved