PCB电路设计中射频接口和射频电路的特性

2013-09-28 13:59:05来源: 互联网

射频电路(RF circuit)的许多特殊特性,很难用简短的几句话来说明,也无法使用传统的模拟仿真软件来分析,譬如SPICE。不过,目前市面上有一些EDA软件具有谐波平衡(harmonic balance)、投射法(shooting method)…。等复杂的算法,可以快速和准确地仿真射频电路。但在学习这些EDA软件之前,必须先了解射频电路的特性,尤其要了解一些专有名词和物理现象的意义,因为这是射频工程的基础知识。

  射频的界面

  无线发射器和接收器在概念上,可分为基频与射频两个部份。基频包含发射器的输入讯号之频率范围,也包含接收器的输出讯号之频率范围。基频的频宽决定了数据在系统中可流动的基本速率。基频是用来改善资料流的可靠度,并在特定的数据传输率之下,减少发射器施加在传输媒体(transmission medium)的负荷。因此,PCB设计基频电路时,需要大量的讯号处理工程知识。发射器的射频电路能将已处理过的基频讯号转换、升频至指定的频道中,并将此讯号注入至传输媒体中。相反的,接收器的射频电路能自传输媒体中取得讯号,并转换、降频成基频。

  发射器有两个主要的PCB设计目标:第一是它们必须尽可能在消耗最少功率的情况下,发射特定的功率。第二是它们不能干扰相邻频道内的收发机之正常运作。就接收器而言,有三个主要的PCB设计目标:首先,它们必须准确地还原小讯号;第二,它们必须能去除期望频道以外的干扰讯号;最后一点与发射器一样,它们消耗的功率必须很小。

  小的期望讯号

  接收器必须很灵敏地侦测到小的输入讯号。一般而言,接收器的输入功率可以小到1 μV。接收器的灵敏度被它的输入电路所产生的噪声所限制。因此,噪声是PCB设计接收器时的一个重要考虑因素。而且,具备以仿真工具来预测噪声的能力是不可或缺的。附图一是一个典型的超外差(superheterodyne)接收器。接收到的讯号先经过滤波,再以低噪声放大器(LNA)将输入讯号放大。然后利用第一个本地振荡器(LO)与此讯号混合,以使此讯号转换成中频(IF)。前端(front-end)电路的噪声效能主要取决于LNA、混合器(mixer)和LO。虽然使用传统的SPICE噪声分析,可以寻找到LNA的噪声,但对于混合器和LO而言,它却是无用的,因为在这些区块中的噪声,会被很大的LO讯号严重地影响。

  小的输入讯号要求接收器必须具有极大的放大功能,通常需要120 dB这么高的增益。在这么高的增益下,任何自输出端耦合(couple)回到输入端的讯号都可能产生问题。使用超外差接收器架构的重要原因是,它可以将增益分布在数个频率里,以减少耦合的机率。这也使得第一个LO的频率与输入讯号的频率不同,可以防止大的干扰讯号「污染」到小的输入讯号。

  因为不同的理由,在一些无线通讯系统中,直接转换(direct conversion)或内差(homodyne)架构可以取代超外差架构。在此架构中,射频输入讯号是在单一步骤下直接转换成基频,因此,大部份的增益都在基频中,而且LO与输入讯号的频率相同。在这种情况下,必须了解少量耦合的影响力,并且必须建立起「杂散讯号路径(stray signal path)」的详细模型,譬如:穿过基板(substrate)的耦合、封装脚位与焊线(bondwire)之间的耦合、和穿过电源线的耦合。

  大的干扰讯号

  接收器必须对小的讯号很灵敏,即使有大的干扰讯号(阻挡物)存在时。这种情况出现在尝试接收一个微弱或远距的发射讯号,而其附近有强大的发射器在相邻频道中广播。干扰讯号可能比期待讯号大60~70 dB,且可以在接收器的输入阶段以大量覆盖的方式,或使接收器在输入阶段产生过多的噪声量,来阻断正常讯号的接收。如果接收器在输入阶段,被干扰源驱使进入非线性的区域,上述的那两个问题就会发生。为避免这些问题,接收器的前端必须是非常线性的。

  因此,「线性」也是PCB设计接收器时的一个重要考虑因素。由于接收器是窄频电路,所以非线性是以测量「交互调变失真(intermodulation distortion)」来统计的。这牵涉到利用两个频率相近,并位于中心频带内(in band)的正弦波或余弦波来驱动输入讯号,然后再测量其交互调变的乘积。大体而言,SPICE是一种耗时耗成本的仿真软件,因为它必须执行许多次的循环运算以后,才能得到所需要的频率分辨率,以了解失真的情形。

  相邻频道的干扰

  失真也在发射器中扮演着重要的角色。发射器在输出电路所产生的非线性,可能使传送讯号的频宽散布于相邻的频道中。这种现象称为「频谱的再成长(spectral regrowth)」。在讯号到达发射器的功率放大器(PA)之前,其频宽被限制着;但在PA内的「交互调变失真」会导致频宽再次增加。如果频宽增加的太多,发射器将无法符合其相邻频道的功率要求。当传送数字调变讯号时,实际上,是无法用SPICE来预测频谱的再成长。因为大约有1000个数字符号(symbol)的传送作业必须被仿真,以求得代表性的频谱,并且还需要结合高频率的载波,这些将使SPICE的瞬态分析变得不切实际。

关键字:PCB电路  射频接口  射频电路

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/0928/article_19564.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
PCB电路
射频接口
射频电路

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved