3D视频技术全面解析(二)

2013-09-25 08:54:55来源: 互联网

3D视频拍摄

  怎么样还原到人能看到的东西?通过两台摄像机,以前通过一台摄像机看到的是两维的,通过两台摄像机模拟人的眼睛,拍左眼和右眼的画面。目前两个摄像机的排列方式是两种,一种是水平的并排,另一种是垂直上下的方式,根据不同的系统自己可以做一些试验。到底哪种好,它们之间的距离一般跟人的眼睛瞳孔差不多,60-65毫米,拍的时候可以根据近景或者远景调整两个摄像机之间的距离。很重要的问题是确保两个摄像机之间的光圈、焦距和亮度一致,否则拍出来的两个画面人眼看起来会有很多不适的感觉。当然现在很多摄像机都通过电缆机械自动调节,但很难保证两个完全一致。现在有些研究,比如说两台摄像机之间位移差多少可以接受,亮度差多少可以允许,这也是将来做3D测试测量的标准和主要的内容,还有双眼垂直之间的差别和亮度的差别有多少对人的感觉不会那么明显。另一个问题,运动的物体要确认拍的时候左眼和右眼都有,如果运动物体拍的时候左眼或右眼没有,再合成的时候物体看起来就很奇怪了,叠加不上。一般来说背景可以左右眼之间有差异,但运动的物体要确保落在左右摄像机拍摄的区域之内。

  另一种是垂直摄像机的摆放, 3D左眼信号直接进入摄像机,右眼通过分光镜分过来,分过来的时候是倒像的,需要利用旋转电路把它翻过来,因为电路之间处理的不一样,要确保拍的图像时间一致,如果时间上差了一帧或者两帧,最后出来的画面就完全乱掉了。曾经有一篇文章说明了为什么要垂直的,因为水平的话由于两个机器本身的尺寸太大,很难保证它们之间的距离是60-65毫米,因为机器比较宽,用垂直的方式可以很好的调整左右摄像机之间的间距。

  摄像机水平和垂直都会有角度的问题,到底是并行拍还是用扩散的方式来做?并行可以很好的保证水平方向,但是有一个问题:人看东西一般来说有汇聚点,如果前期并行拍,后期制作的时候可以汇聚,调整之间的画面,汇聚会比较难,要算拍的位置跟摄像机的距离,需要把它定位到画面是朝屏幕外还是朝里,会有很多的计算在里面,比较麻烦。

  所谓的3D是视差产生的左右位移,最后才会有3D的效果出来。视差有四种(见下图):零视差,左眼和右眼看到的距离一样;正视差是右眼在左眼之前,一般画面在屏幕的后面;负视差是右眼看到的画面在左眼的左边,负视差看到的画面应该是在屏幕的前方;正常的两眼不能有分散的视觉,要避免拍的时候出现散的视差状况出现。零视差一般是电影或者电视的屏幕,到底哪个算屏幕?零视差的点就是电影屏幕和电视的屏幕,如果画面要出屏得以这个为参考,入屏也得以这个为参考。正视差是右眼在左眼的右边,它的点落在屏幕的后方,画面呈现出来的效果是在屏幕的后面位置。负视差画面是在零视差定义的屏幕前方,右眼看的画面是在左眼的左方,物体全在屏幕的外面,会产生悬空的感觉,朝视觉方向飞过来。分散的视差人眼不会散开,真正拍的话不会有这种画面出来。

  

四种不同类型的视差效果

 

  图2:四种不同类型的视差效果。

  拍的时候会有一个平面轴,所谓的负视差我们建议往眼睛这边飞过来的时候不要太靠眼睛,如果突然一个子弹打过来,如果打的太靠近对人的眼睛适应性不是很好,画面到哪个位置比较合适?有些研究说到手臂长的位置是比较合适的负视差,但不能为了追求效果汇聚点非常多,这样效果不一定好,分散的地方也不需要太大,目前大家都只是在做研究课题,还没有标准的定义到底什么样的范围我们能接受,这里会有很多的实验,包括数据。

  因为是两台摄像机拍,要保证之间的亮度和色度是一致,如果有一定的差异,看起来也很难受。看的时候要把左眼和右眼叠加在一起,到底我们能允许多少垂直上的色差、亮度跟色度的差异?虽然我们有很多的软件和工具保证两个摄像机之间的光圈和对焦,但不可能保证完全一致,目前没有很权威的标准来定义到底多大范围可以接受。如果左眼跟右眼没有完全分开,即虽然是左眼的信息,但也可以看到右眼的东西,这会对我们的视觉造成很混乱的效果,会产生非常难受的感觉。

  定一个零视差的屏,如果拍的时候总转换视差屏,对我们的冲击也很大。不建议大家变化零视差,同一个场景零视差的屏应该是固定的,不能同样一个产品变来变去,眼睛要不断地调节焦距对焦,眼睛会很累。如果变化的话,建议从一个屏面过渡到另一个屏面的时候最好是2D的,在另一个屏面上再建立立体的感觉,这样人的眼睛会有适应的过程,看起来就不会特别难受,不要在同一类场景中变化零视差屏。

  3D视频监视和测量

  对3D拍出来的亮度、色度、焦距的测试,泰克也有些相关的解决方案。如果左右两个画面亮度差异很大,大家看3D效果会非常糟糕。利用棋盘的检验方式,可以很轻易的看到左右眼之间的画面亮度有多大差别,如果亮度和色度差别不大,左右不会有很大的过渡,亮度和色度看起来会有比较平滑的感觉,通过调光圈和灯光,确保亮度和色度在同样的范围之内。下图是左右眼的图像误差示意图,右边因为视差的关系阳光透进来,如果把两个画面合成3D效果看起来就很别扭,如果做二维拍摄光晕不允许,3D拍的时候也要避免这种效果出来,左边没有太阳,右边有太阳,这样合成画面的话会有非常大的问题。从测试波形可以看出,右眼亮度明显比左眼高,要调节光圈,不要出现光晕的现象。

  

左眼和右眼的图像误差

 

  图3:左眼和右眼的图像误差:亮度电平不同,色彩不同。

  

利用泰克WFM8300进行视频电平调整

图4:利用泰克WFM8300进行视频电平调整。

  两个镜头要同时调,如果它们之间的焦距或者光圈不一样,出来的画面也是非常糟糕的,通过左眼减右眼的效果,会有一定的差,这个是正确的,我们希望看到的立体感觉,本身左眼和右眼看起来就会有差别,在水平位移上有一定的差别,往里面的画面,远处的海边天空远景差别没有立体感,这边我们有差别,看起来是比较理想的立体感觉。如果轴距没有调好,左边会比右边大,它们的差异除了水平,垂直的也有位移差,这是不允许的,所以要调整光圈,确保调焦,保证它们在垂直上没有任何差异。

  示波器可以把左右眼之间叠加起来,打上右眼或者左眼的颜色,直接戴上眼镜去看它的效果,这种眼镜可以打上红跟青或者绿跟品红,这样可以简单判断画面情况,如果想知道立体深度有多少,比如有多少像素,这边可以打上视觉差的栅格,每一个是129个像素,位移差就代表着立体的深度,垂直方面可以是50%、25%或者10%。左右眼之间还有另一种方式就是光标,直接把光标打上,显示屏下方会直接告诉你目标水平视差是多少,大概多少像素,通过这种方式可以看到到底左眼在前面还是右眼在前面,画面到底是出屏还是入屏,立体深度是多少。

  3D拍好了到底怎么样传输?目前有几种方式,一种是两个都是高清的SDI传输,将来要用3G的方式,1080 50p只是3G中的一种方式。用两路传输会碰到传输时延问题和争议问题,现在的方式是通过两个SDI的方式,一个是左眼的信号,一个是右眼的信号,会出来两个测试的信号。建好系统和检测设备以后,通过左右眼的信号检测整个通道。需要注意有没有把左右眼的信号搞混,包括有没有通道之间的延时,如果通道之间有延时会造成错位,3D的效果就会有很大的问题。

  3D视频传输对应的测试仪器是最新的波形监测仪——WFM8300,可以同时看两路信号。通过波形可以判断到底是左眼的画面在右边还是右眼的画面在右边,这样就可以立体感觉到是往内还是往外。可以把两路信号合成一路信号,真正在传输里看到,如果你能接到投影或者通道的话可以监看,这就是侦测3D信号。

  

可同时监测两路信号的波形监测仪

 

  图5:可同时监测两路信号的波形监测仪——WFM8300。

  前不久美国实验室有一个传输的规范,传3D的信号有两种方式,一种是3D的左眼右眼并列传,通过压缩。这种方式适用于1080i隔行扫描格式,左眼在水平方面压缩一半,右眼在水平方向压缩一半,类似于1080i的画面,通过MPEG2和H.264去传输,经过解码器把左眼跟右眼信号分别解码出来,这时的水平只有一半,再做上变换,得到的画面就是1080i,出来的即是左右眼的信号。720p的方式是上下的,上部分是左眼,下部分是右眼,这样出来的还是720p的画面,现有的系统同样可以传左右眼的信号,定义多少行到多少行是左眼,多少行到多少行是右眼,接收的解码器同样可以把左右眼解出来,通过电视机显示出来。

  

立体视图测量

 

  图6:立体视图测量——边缘检测。

可以利用泰克视频质量分析仪VQS1000做传输3D信号的监测,能看到左眼跟右眼之间的边缘,区分到底谁在右边,谁在左边。绿色的代表右眼,蓝色代表左眼,如果右眼在左眼的右边表示这个画面是往外的效

[1] [2]

关键字:3D  视频技术

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/0925/article_19491.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
3D
视频技术

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved