工程师参考手册(一):D类功放设计须知

2013-09-11 20:34:58来源: 互联网

一、D类音频功率放大器设计基础

  D功放是基于脉冲宽度调制技术的开关放大器,包括脉冲宽度调制器(几百千赫兹开关频率),功率桥电路,低通滤波器。本文从构成、拓扑结构对比、MOSFET的选择与功率损耗、失真和噪音产生、音频性能等D类音频功率放大器设计有关的基础问题作分析,并例举D类功率放大器参考设计。

  1、 D类功放基本构成

  目前有很多种不同种类的功放,如:A类、B类、AB类等。但D类功放与其不同的是基本是一个开关功放或者是脉宽调制功放。为此,主要将对说明这类D类功放作以说明。

  在这种D类功放中,器件要么完全导通,要么完全关闭,大幅度减少了输出器件的功耗,效率达90-95%都是可能的。音频信号是用来调制PWM载波信号,其载波信号可以驱动输出器件,用最后的低通滤波器去除高频PWM载波频率。

  众所周知, A类、B类和AB类功放均是线形功放,那么D类功放与它们究竟有什么不同?我们首先应作讨论。图1是D功放原理框图,在一个线性功放中信号总是停留在模拟区,输出晶体管(器件)担当线性调整器来调整输出电压。这样在输出器件上存在着电压降,其结果降低了效率。

  D功放原理框图

  而D类功放采用了很多种不同的形式,一些是数字输入,还有一些是模拟输入,在这里我们将集中讨论一下模拟输入。

  上面图1显示的是半桥D类功放的基本功能图,其中给出了每级的波形。电路运用从半桥输出的反馈来补偿母线电压的变化。那末D类功放是如何工作的呢?D类功放的工作原理和PWM的电源是相同的,我们假设输入信号是一个标准的音频信号,而这个音频信号是正弦波,典型频率从20Hz到20kHz范围。这个信号和高频三角或锯齿波形相比可以产生PWM信号,见图2a中所示。这个PWM信号被用来驱动功率级,产生放大的数字信号,最后一个低通过滤波器被用在这个信号上来滤掉PWM载波频率,重新得到正弦波音频信号,见图2b中所示。

  

  2、 从拓扑结构对比-看线性和D类不同

  值此将讨论线性功放(A类和AB类)和D类数字功放的不同之处。这两者之间主要的不同是效率,这也是为什么要发明D类功放的原因。线性功放就其性能而言具有固有的线性,但是即使是AB功放其效率也只有50%,而D类功放的效率很高,在实际的设计中达90%。

  增益-线性功放增益不受母线电压影响而变化,然而D类功放的增益是和母线电压成比例的。这就意味着D类功放的电源抗扰比率是0dB,而线性的PSRR(电源供应抑制比率)就很好。在D类功放中普遍用反馈来补偿母线电压变化。

  能量流向-在线性功放中,能量是从电源到负载,虽然在全桥D类功放中也是这样,但半桥D类功放还是不同的,因为能量可以双向流动而导致“母线电压提升”现象产生,这样会造成母线电容被从加载来的能量充电。这个主要发生在低频上,如低于100Hz是这样。

  3、 D类功放与Buck降压转换器类拓扑差异

  在D类功放和同步降压转换器拓扑原理作如图3所示。这两个电路之间的主要不同有三:其一、对于同步降压转换器,其基准电压来自反馈电路的慢慢变化的稳定电压;而D类功放的参考信号是一个不断变化的音频信号。也就是说,同步降压转换器的占空比是相对稳定的,而D类以围绕50%占空比不断地改变。其二、在同步降压转换器中负载电流的方向总是朝着负载,即电感电流为单向,见图3左所示。但是在D类功放中电流是朝着两个方向的,即电感电流为双向,见图3右所示。最后的不同是MOSFET的优化方式。同步降压转换器对于高低端的晶体管有着不同的优化,较长的周期需要较低的Rds(on),而较短的周期需要低的Qg(栅极电荷),即两个开关作用不同。但D类功放对两个MOSFET有着相同的优化方式。高低端器件有相同的Ras(on),即两个开关作用相同。

  D类功放和同步降压转换器拓扑原理

  4、 D类功放中MOSFET的选择

  在功放中要达到高性能的关键因素是功率桥电路中的开关。在开关过程中产生的功率损耗、死区时间和电压、电流瞬时毛刺等都应该尽可能的最小化来改善功放的性能。因此,在这种功放中开关要做到低的电压降,快速的开关时间和低杂散电感。

  由于MOSFET开关速度很快,对于这种功放它是你最好的选择。它是一个多数载流子器件,相对于IGBT和BJT它的开关时间比较快,因而在功放中有比较好的效率和线性度。而MOSFET的选择是基于功放规格而定。因而在选择器件以前要知道输出功率和负载阻抗(如100W 8Ω),功率电路拓扑(如半桥梁或全桥),调制度(如89%—90%)。

  5、 MOSFET中的功率损耗

  功率开关中的损失在AB线性功放和D类功放之间是截然不同的。首先看一下在线性AB功放中的损耗,其损耗可以定义如下:

  

  K是母线电压与输出电压的比率。

  对于线性功放功率器件损耗,可以简化成下面的公式:

  

  需要说明的是AB功放功率损耗与输出器件参数无关。

  现在一起看一下D类功放的损失,在输出器件中的全部损耗如下:

  Ptotal=Psw+Pcond+Pgd

  Psw是开关损耗

  Pcond是导通损耗,

  Pgd是栅极驱动损耗

  从上式可看于D类功放的输出损耗是根据器件的参数来定的,即基于Qg(栅极电荷)、Rds(on)(静态漏源通态电阻)、Coss(MOSFET的输出电容)和tf(MOSFET下降时间),所以减少D类功放损耗应有效选择器件,图4是D类功放的功率损耗和K的函数关系。

  

  6、 半桥和全桥结构拓扑的对比

  和普通的AB类功放相似,D类功放可以归类成两种拓扑,分别是半桥和全桥结构。每种拓扑都各有利弊。简而言之,半桥简单,而全桥在音频性能上更好一些,全桥拓扑需要两个半桥功放,这样就需要更多的元器件。尽管如此,桥拓扑的固有差分输出结构可以消除谐波失真和直流偏置,就像在AB功放中一样。一个全桥拓扑允许用更好的PWM调制方案,比如量化几乎没有错误的三水平PWM方案。

  在半桥拓扑中,电源面临从功放返回来的能量而导致严重的母线电压波动,特别是当功放输出低频信号到负载时。能量回流到电源是D类功放的一个基本特性。在全桥中的一个臂倾向于消耗另一个臂的能量。所以就没有可以回流的能量。

  7、 不完美失真和噪音产生

  一个理想的D类功放没有失真,在可听波段没有噪音且效率足100%。然而,实际的D类功放并不完美并且会有失真和噪音。其不完美是由于D类功放产生的失真开关波形造成的。原因是:

  *从调制器到开关级由于分辨率限制和时间抖动而导致的PWM信号中的非线性。

  *加在栅极驱动上的时间误差,如死区时间,开通关断时间,上升下降时间。

  *开关器件上的不必要特征,比如限定电阻,限定开关速度或体二极管特征。

  *杂散参数导致过度边缘的震荡。

  *由于限定的输出电阻和通过直流母线的能量的反作用而引起得电源电压波动

  *输出LPF中的非线性。

  一般来讲,在栅极信号中的开关时间误差是导致非线性的主要原因。特别是死区时间严重影响了D类功放的线性。几十纳秒少量的死区时间很容易就产生1%以上的THD(总谐波失真),见图5(c)所示。

  

  8、 死区时间(见图5(a)所示是如何影响非线性的)

  其图5(a)(b)(c)为死区时间(或称延时时间)对失真的影响示意图。D类输出级中的工作模式可以根据输出波形如何跟随输入时间可归类成三个不同的区域。在这三个不同的工作区,输出波形跟随高低端输入信号的不同边缘而变化的。

  

  让我们检查一下第一个操作区(见图5c所示High side edges),在这里电流比电感器波纹电流还大时,输出电流就从D类功放流向负载。高端器件在低端器件开通之前关断,输出节点就会被转到负母线。这个过程与低端器件开通时间无关,它是通过从解调电感的换向电流自动造成的。因此输出波形与嵌入到低端器件开通前的死区时间无关。因此PWM波形只被嵌入到高端栅极信号的死区短路了,而造成所希望的输入占空比的轻微电压增益降低。

  

  有个相似的情况发生在负工作区(见图5c所示Low side edges),输出电流从加载流向D类功放。电流高于电感波纹电流。在这种情况下,输出波形的时间并没有受嵌入高端开通沿的死区时间的影响,而总是允许低端输入时间。因此,PWM波形只被嵌入到低端器件栅极信号的死区时间短路。

  在以前描述的两个操作模式中存在一个区域,在这个区域中输出时间与死区时间是独立的。当输出电流小于电感波纹电流时,输出时间跟随每个输入的关断沿。因为在这个区域,是ZVS(零电压开关)操作状态(见图5c所示Falling edges),因此在中间区域就不会有失真。

  当输出电流随着音频输入信号的不同而变化时,D类功放将改变它的操作区,这样每个都会有细小的不同增益。在音频信号的周期中的这三个不同区域增议会歪曲输出波形。

图5(b)显示的是死区时间如何影响THD性能的。一个40nS死区时间可以产生2%的THD。这个可以通过减小死区时间到15nS提高到0.2%。这个标志着更好线性与高低端开关器件转换过

[1] [2]

关键字:工程师  D类  功放设计

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/0911/article_19260.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
工程师
D类
功放设计

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved