选择适合MEMS麦克风前置放大应用的运算放大器(二)

2013-04-22 21:53:00来源: 互联网 关键字:MEMS  麦克风  前置放大  运算放大器

电源电压

运算放大器的电压通常表示为一个范围,例如3 V至30 V,这标示了V+和V-电压引脚之间最小值和最大值的区别。运算放大器可以采用单电源将V-接地或者采用双极性电源将V+和V-分别设置为等值的正负值(例如±15 V)。

需要选择合适的电源电压以保证运算放大器的输出不对给定的电源轨削波。有些运算放大器以轨到轨方式工作,这表示输入或输出电压(取决于具体的参数)可以在不削波的情况下可以一直调到轨电压。如果运算放大器不是轨到轨方式,数据表中将标示最大输入和输出电压;请注意正负电压最大值可能不同。

信号的峰值输出电压显然与前置放大器电路提供的增益有关。ADMP504的峰值输出电压为0.25 Vrms。当ADMP504连接至增益为20 dB(10×增益)的前置放大器,其峰值输出电压为2.5 Vrms,即7.0 VP-P。因此,该电路需要至少7.0 V电源电压或±3.5的轨到轨输出运算放大器。如果运算放大器输出不是轨到轨,则电源电压需要更高值。

模拟MEMS麦克风工作电压为1.5 V至3.3 V。表1中列出的部分运算放大器最低电源电压为2.7 V,因此在低功耗单电源电路中麦克风的电源电压VDD必须介于2.7和3.3 V之间。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

表1. 音频运算放大器

增益带宽积

增益带宽积(GBP)正如其名,是放大器带宽(采用低通-3 dB转折)和加于输入信号上的增益的乘积。大部分针对MEMS麦克风的前置放大器设计不需要附加大于40 dB的增益,即因子为100。设计带宽至少为50 kHz的前置放大器应该提供部分余量保证运算放大器的带宽限制不会影响更高的音频频率。带6.5 MHz GBP的运算放大器,例如ADA4075-2,在一个增益为40 dB的电路中将在信号开始滚降之前的通带最高为65 kHz。

数据手册中典型性能特性部分绘制的规格曲线为增益与频率的关系。这张ADA4075-2数据手册中的图(见图3)显示了运算放大器的开环增益与频率的关系。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图3. ADA4075-2开环增益和相位与频率的关系

其他规格

此外根据电路具体的用处,还需要考虑其他规格。例如,如果前置放大器需要驱动低阻抗负载,例如耳机,您将需要选择具有高驱动能力的运算放大器。

运算放大器的电源电流通常指放大器的空载电流。低功耗电路设计显然采用低电源电流的运算放大器最合适。运算放大器的噪声和电源电流通常成反比,因此需要在音频性能和功耗之间进行取舍。

最后,也有些其他规格您不需要考虑。失调电压通常被认为是运算放大器的一个重要规格,但对于ac耦合的前置放大器应用并不重要。

电路

基本的前置放大器电路有两种设置:反相和同相。该部分描述了这两种设置的使用和优点。

此类电路不显示电源或旁通电容。虽然电源盒旁通电路对于电路性能非常重要,但是显示这两个规格对于描述前置运算功能并不重要。大部分运算放大器的数据手册和AN-202应用笔记:IC放大器耦合、接地以及随机应变中都包含您设计需要的更多有关去耦电容和接地技术的信息。您还可以在运算放大器数据手册中获得更多其它更专业的音频电路。

同相

同相前置放大器电路的输出和其输入极性相同。在信号极性需要保持不反相的应用中此类电路非常适合。图4显示的配置中同相运算放大器电路的增益为G = (R1 + R2)/R1。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图4.同相前置放大器电路

该配置具有非常高的输入阻抗,因为麦克风信号直接与运算放大器的同相输入直接相连。C1是由于MEMS麦克风输出偏置在0.8V而采用的一个隔直电容。该电容在该配置中不需要非常大,因为运算放大器的输入阻抗非常高。

相对于反相拓扑而言,同相拓扑电路更需要考虑共模抑制规格。在同相电路中,共模电压能导致输出信号的失真。运算放大器的数据手册通常会显示共模抑制比(CMRR)与频率的关系供您参考,用于决定音频频带中某个具体器件的性能。这对于反相电路则不是问题,因为反相电路没有动态共模电压;两个输入都保持为接地或虚拟接地。

反相

图5显示了一个反相运算放大器的电路。该电路的输出极性与输入反相,增益为G =-R2/R1。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图5. 反相前置运算电路

反相电路的输入阻抗等于R1。该电阻成了MEMS麦克风输出的电压分压器,因此需要选择足够高的电阻值不加载麦克风的输出,但也不能太大,为电路增加不必要的噪声。模拟MEMS麦克风通常具有200Ω的输出阻抗。如果R1选为2.0 kΩ,则电压分频器会将麦克风的输出信号电平降低9%。

VOUT= (2.0 kΩ + 200Ω)/2.0 kΩ × VIN= 0.91 × VIN

直隔电容C1和R1会形成一个高通滤波器,因此C1应选择足够大的值以确保该滤波器不会干扰麦克风的输入信号。ADMP504的低频转折点为100 Hz。如果R1再次选择2.0 kΩ,则2.2μF电容将形成一个频率为40 Hz的-3 dB高通滤波器,远低于麦克风的转折频率。

选择至少比麦克风低一个频程的截止频率也是一项经验法则,除非需要实现一项具体的高通特性。

电压跟随器

如果反馈环路中没有使用分压电路,同相放大器也可用作电压跟随器。该电路非常适合在无法直接驱动较长的走线或者电缆时缓冲麦克风的输出,可能不需要为信号增加额外的增益。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图6. 电压跟随器

电压跟随器可在反相极前端用作缓冲器。可能需要改配置以确保能在反相电路中使用更低值的电阻。在无缓冲的情况下,反相极的输入阻抗可能需要采用更低值以实现目标噪声性能。在保证缓冲和第一个运算放大器的低输出阻抗(与MEMS麦克风相比)的情况下,电阻R1和R2能选择较低值以避免给电路造成额外的噪声。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图7.带反相放大器的电压跟随器缓冲器

差分输出

MEMS麦克风的单端输出可用两个运算放大器和两个反相电路级(见图8)以简单的串联结合转换为一个差分信号。每级的输出转换为彼此反相,作为差分对。图8显示的电路中信号的放大发生在第一级,由R1和R2设置。电阻R3和R4值应相等,为第二级提供单位增益。为了实现最佳性能,应该采用1%电阻(或更好)来使两级之间的误差最小化。

该配置的一个缺点是一个输出仅由一个放大器产生噪声和失真,而第二级输出则有两个放大器产生噪声和失真。第二个小问题是每个放大器之间存在一个非零延迟,因此差分输出的两侧并非完全对齐。然而,这可能对差分信号的性能影响极小。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图8. 差分输出电路

图7显示的电压跟随器和反相放大器电路还可用于实现一个增益为1的差分信号。同相输出可以从电压跟随器放大器输出提取,反相输出可以从反相放大器的输出提取。在该配置中,R1和R2的值应保持相同以达到统一的增益。

差分放大器,例如AD8273,也可用于实现单端至差分电路,从前文提到的问题方面考虑也可能具有更出色的性能。

图9显示了AD8273配置为单端至差分放大器。每个放大器配置为G=2,因此差分增益为4×。

选择适合MEMS麦克风前置放大应用的运算放大器(电子工程专辑)

图9. AD8273单端转差分配置,G = 4

运算放大器的选择

ADI提供大量适合麦克风前置放大应用的各种运算放大器产品。图1显示了部分此类元件的规格,根据电压噪声进行分类。不管您的应用旨在实现最佳性能还是您需要设计一个性价比高的电路,总有一款应用放大器能够满足您的需要。

性能仿真

ADI提供了用于仿真模拟电路的工具。NI Multisim器件评估板的ADI版本可用于快速建立一个电路并显示其性能规格,包括频率响应和噪声电平。该Multisim版本包含了大部分该库中讨论的大部分运算放大器,可以无需从不同源下载和管理SPICE模型就实现快速仿真。不同器件,包括运算放大器,可置入电路或取出以比较不同器件的性能。

关键字:MEMS  麦克风  前置放大  运算放大器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/0422/article_18189.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:选择适合MEMS麦克风前置放大应用的运算放大器(一)
下一篇:信号链基础知识:如何设计一款适用RS-485的2-4线转换器

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
MEMS
麦克风
前置放大
运算放大器

小广播

独家专题更多

TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved