功率元器件应用秘诀,采用专用MOSFET提高效率

2013-02-24 16:52:43来源: 互联网
新的MOSFET将瞄准多个市场,包括直流对直流(DC-DC)、离线交流对直流(AC-DC)、电机控制、不断电系统(UPS)、太阳能逆变器(Inverter)、焊接、钢铁切割、开关电源(Switched-mode Power Supply, SMPS)、太阳能/风能和电动车(EV)电池充电器等。

  具较高开关频率 MOSFET应用范围优于IGBT

  由于电力需求日益增长,且发电成本也同步上升,对公家事业而言,政府机构要求减少有害气体排放量的压力也在增加,在在迫使设计人员须提高设备电源效率和性能。尤其各国政府机构对最低电源转换效率的规範,更让元件设计人员须根据特殊拓扑的变化,开发特定应用MOSFET,因此元件参数在所有拓扑中,均扮演改善电路效率和性能的重要角色。

  在1970年代晚期推出MOSFET前,闸流体(Thyristor)和双极型接面电晶体(Bipolar Junction Transistors, BJT)是仅有的功率开关。BJT是电流受控元件,而MOSFET与在1980年代面世的绝缘闸双极电晶体(IGBT)则同为电压受控元件。

  然而,MOSFET是正温度系数元件,但IGBT不一定是正温度系数元件;且MOSFET为多数载流子元件,成为高频应用的理想选择,如将DC转换为AC的逆变器,可以在超音波的频率下工作,以避免音频干扰;相较于IGBT,MOSFET还具有高抗雪崩能力。

  在选择MOSFET时,工作频率是一项重要的考量因素,与同等的MOSFET相比,IGBT具有较低的箝位能力。当在IGBT和MOSFET之间选择时,必须考虑逆变器输入的DC汇流排电压、额定功率、功率拓扑和工作频率。IGBT通常用于200伏特(V)及以上的应用;而MOSFET可用于从201000伏特的应用。市面上业者虽可提供300伏特的IGBT,但MOSFET的开关频率比IGBT高得多,且较新型MOSFET还具有更低的导通损耗和开关损耗,逐渐在高达600伏特的中等电压应用取代IGBT。

  环保节能意识抬头 特定应用MOSFET需求大增

  对替代能源电力系统、UPS、开关电源和其他工业系统的设计工程师而言,由于须不断设法改进系统轻载和满载时的电源转换效率、功率密度、可靠性和动态性能,故对效能优异的特定应用MOSFET需求殷切。其中,风能是近来增长最快的能源之一,风力机翼片控制中须使用大量的MOSFET元件,藉着满足不同应用需求,特定应用MOSFET即可改善上述所需的功能表现。

  不久的将来,其他需要新型和特定MOSFET的应用还包括易于安装在家庭车库,或商业停车场的电动车充电系统。这些充电系统将通过太阳能系统和公用电网(Utility Grid)来运行。由于壁挂式电动车充电站须具快速充电能力,且建置太阳能电池充电站也将变得愈来愈重要,均须导入可支援高压的特定应用MOSFET。

  太阳能逆变器可能需要不同的MOSFET,例如Ultra FRFET MOSFET和常规体(Regular Body)二极体MOSFET;至于叁相马达驱动和UPS逆变器则需相同类型的MOSFET。近来,业界大量投资太阳能发电,大多数增长始于住宅太阳能计画,随后较大规模的商业专案也陆续出现,而多晶硅价格已从2007年的每公斤400美元跌落至2009年的每公斤70美元,且仍持续降价,也将驱动市场显着增长。

  事实上,太阳能系统对特定应用MOSFET的需求早已存在。由于太阳能可帮助降低峰值功率的成本,避免发电成本随燃料价格波动而增加,并可为公用电网提供更多的电力,成为取之不尽的绿色能源;加上美国政府已设定目标,要求80%的国家电力要来自绿色能源,在在带动对特定应用MOSFET元件不断增长的需求。如果将不同拓扑的MOSFET元件优化,可显着提升最终产品解决方案的效率。

  与此同时,逐渐普及的市电并联(Grid-tie)逆变器係一种将DC转换为AC注入现有公用电网的专用逆变器。DC电源由可再生能源产生,如风力机组或太阳能电池板,该逆变器也被称为电网交互(Grid Interactive)或同步逆变器,只有在连接至电网时,市电并联逆变器才会工作。目前市场上的逆变器採用各种拓扑设计,视功能要求的折衷权衡而定,独立操作的逆变器也以特定设计,提供功率因数为1,或延迟、超前的电源。

  儘管特定应用MOSFET正快速兴起,但其诉求高开关频率须降低MOSFET的寄生电容,此一做法的代价将牺牲导通电阻(Rds(on))。而低频应用,则要求以降低Rds(on)做为最优先考量。对于单端型应用,MOSFET自体二极体恢復(Body Diode Recovery)特性并不重要,但对双端型应用则变得非常重要,因其要求低反向恢復电荷(Reverse Recovery Charge, QRR)和低反向恢復时间(Reverse Recovery Time, tRR)和更软的自体二极体恢復。在软开关双端应用中,这些要求对可靠性极其重要;而硬开关应用因工作电压增加,导通和关断损耗也将提高,为减少关断损耗,可根据Rds(on)来优化CRSS和COSS。

  MOSFET支援零电压开关(ZVS)和零电流开关(ZCS)拓扑;然而IGBT仅支持ZCS拓扑,故一般而言,IGBT应用于大电流和低频开关,MOSFET用于小电流和高频开关;而透过混合模式模拟工具则可用来设计特定应用MOSFET。

  事实上,随着硅、沟槽技术迭有进展,特定应用MOSFET的导通电阻及其他动态寄生电容均已大幅降低;同时,更先进的封装技术也对改善特定应用MOSFET的自体二极体恢復性能,发挥关键性的作用。

  MOSFET适用高/低频逆变器

  以DC-AC逆变器应用为例,其广泛应用于马达驱动、UPS和绿色能源系统,通常高电压和大功率系统使用IGBT;但对LV、MV、HV(12400伏特输入DC汇流排),通常使用MOSFET。在太阳能、UPS和马达驱动的高频DC-AC逆变器领域,MOSFET已相当普及。

  在某些DC汇流排电压大于400伏特的情况下,会採用HV MOSFET;至于用在低功率应用上,因MOSFET具有一个内在的自体二极体,其开关性能很差,通常会在逆变器桥臂互补MOSFET中带来高导通损耗。不过,在单开关或单端型应用中,如功率因数校正(PFC)、正向或返驰式(Flyback)转换器,自体二极体不是正向偏压,可忽略它的存在。

  由于低载波频率逆变器的负担是附加输出滤波器的尺寸、重量和成本;高载波频率逆变器的优势是较小、较低成本的低通滤波器设计。MOSFET可通用在这些逆变器裡,因可在较高的开关频率下工作,此即减少射频干扰(Radio-Frequency Interference, RFI),且因开关频率电流成分在逆变器和输出滤波器内流转,从而消除向外的流动。

  逆变器强调安全高效率 MOSFET须面面俱到

  逆变器内建的MOSFET要求降低导通损耗,导致元件到元件之间的Rds(on)变化也须做到更小。此举有两个主要目的,首先在逆变器输出端的DC成分较少,且此一Rds(on)可用于电流感测,以控制异常状况(主要是在低压逆变器中);另外就是对相同的Rds(on),低导通电阻可缩小裸晶尺寸,从而降低成本。

  当裸晶尺寸缩小时,还可进一步使用非箝位感应开关(Unclamped Inductive Switching, UIS)来设计MOSFET单元结构;相较于平面MOSFET,在相同的裸晶尺寸条件下,现代沟槽MOSFET具有良好的UIS。而薄裸晶减小热阻(Thermal Resistance, RthJC),在这种情况下,较低的品质因数(FOM)可以公式1表示:

  RSP×RthJC/UIS.。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。公式1

  对逆变器而言,MOSFET还须拥有良好的安全工作区(Safe Operating Area, SOA)和较低的跨导。同时,逆变器会产生少量的闸漏电容(Gate-to-drain Capacitance, CGD)(米勒电荷),但低CGD/CGS比是必要的,可降低击穿的机率,且适度提高CGD可帮助减少电磁干扰(EMI),而低CGD则增加dv/dt,并因此加剧EMI。这些逆变器不在高频下工作,而是处于中频状态,故可让闸极ESR增加少许,并可允许稍高的CGD和CGS。

  此外,MOSFET也要降低COSS减少开关损耗,但开关期间的COSS和CGD突变会引起闸极振盪和高过衝,长时间可能损坏闸级。这种情况下,高源漏dv/dt会成为一个问题。若藉由超过3伏特的高闸极阈值电压(VTH),则可实现更好的抗噪性和并联效益。

  必须注意的是,逆变器MOSFET在某些情况下,需要高脉衝漏极电流(IDM)能力,以提供高短路电流的抗扰度,高输出滤波器的充电电流,以及高马达启动电流。另外,藉着在裸晶上使用更多的接合丝焊来减少MOSFET的共源极电感。

  最后则是拥有自体二极体恢復能力,MOSFET须具低QRR和tRR,且更软、更快的自体二极体。同时,软度因数(Softness Factor)S(Tb/Ta)应该大于1。如此一来,将可减小二极体恢復、dv/dt及逆变器的击穿可能性;反过来说,活跃(Snappy)自体二极体会引起击穿和高电压尖峰脉衝的问题。

  自体二极体对效率影响甚巨

  本文讨论的快速自体二极体MOSFET,因自体二极体的离子寿命被压缩,故减少tRR和QRR,让MOSFET的自体与外延二极体极为相似。这种特性使此一MOSFET适用于各种不同应用的高频逆变器。至于逆变器桥臂,二极体由于反向电流而被迫正向导通,更加突显此特性的重要性。

相形之下,常规MOSFET的自体二极体一般反向恢復时间长、QRR值高,若此自体二极体被迫导通,负

[1] [2]

关键字:功率元器件  MOSFET  效率

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2013/0224/article_17973.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
功率元器件
MOSFET
效率

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved