模拟工程师必知必会:带你全方位学习模数转换器三

2012-11-01 11:05:06来源: 互联网
ADC性能提高的建议

  虽然ADC看起来非常简单,但它们必须正确使用才能获得最优的性能。ADC具有与简单模拟放大器相同的性能限制,比如有限增益、偏置电压、共模输入电压限制和谐波失真等。ADC的采样特性需要我们更多地考虑时钟抖动和混叠。以下一些指南有助于工程师在设计中充分发挥ADC的全部性能。

  模拟输入

  要认真对待ADC的模拟输入信号,尽量使它保持干净,“无用输入”通常会导致“数字化的无用输出”。模拟信号路径应远离任何快速开关的数字信号线,以防止噪声从这些数字信号线耦合进模拟路径。

  虽然简化框图给出的是单端模拟输入,但在高性能ADC上经常使用差分模拟输入。差分驱动ADC可以提供更强的共模噪声抑制性能,由于有更小的片上信号摆幅,因此一般也能获得更好的交流性能。差分驱动一般使用差分放大器或变压器实现。变压器可以提供比放大器更好的性能,因为有源放大器会带来影响总体性能的额外噪声源。但是,如果需要处理的信号含有直流成份,具有隔直流特性的变压器就不能用。在设计预驱动电路时必须考虑驱动放大器的噪声和线性性能。需要注意的是,因为高性能ADC通常有非常高的输入带宽,因此在ADC输入引脚处直接滤波可以减少混入基带的宽带噪声数量。

  参考输入

  参考输入应看作是另一个模拟输入,必须尽可能保持干净。参考电压(VREF)上的任何噪声与模拟信号上的噪声是没有区别的。一般ADC的数据手册上会规定要求的去耦电容。这些电容应放置在离ADC最近的地方。为了节省电路板面积,PCB设计师有时会将去耦电容放在PCB的背面,这种情况应尽可能避免,因为过孔的电感会降低高频时电容的去耦性能。VREF通常用来设置ADC的满刻度范围,因此减小VREF电压值会减小ADC的LSB值,使得ADC对系统噪声更加敏感(1V满刻度10位ADC的LSB值等于1V/210=1mV)。

  图1:典型的模数转换器功能框图

  时钟输入

  根据具体的应用,数字时钟输入可能与模拟输入具有同等的重要性。ADC中有两大噪声源:一个是由输入信号的量化引起的(正比于ADC中的位数),另一个是由时钟抖动引起的(在错误时间点采样输入信号)。根据以下公式,在非过采样ADC应用中量化噪声将限制最大可能的信噪比(SNR)值。

  其中,N为ADC的位数、SNR为信噪比。

  从直观感觉这是有意义的:每增加一位,ADC编码的总数量就会增加一倍,量化不确定性可降低一半(6dB)。因此理论上一个10位ADC可以提供61.96dB的SNR。根据以下等式,采样时钟上的任何抖动都会进一步降低SNR:

  其中,SNRj是受抖动限制的SNR,fa是模拟输入频率,tj是时钟抖动的均方根(rms)值。

  用抖动等于8ps的采样时钟数字化70MHz的模拟信号,可以得到接近49dB SNR的有限抖动,相当于将10位ADC的性能降低到了约8位。时钟抖动必须小于2ps才能取得等效于10位ADC的SNR。还有许多影响SNR的二阶因素,但上述等式是非常好的一阶接近函数。差分时钟常用来减小抖动。

  电源输入

  大多数ADC有分离的电源输入,一个用于模拟电路,一个用于数字电路。推荐在尽量靠近ADC的位置使用足够多的去耦电容。尽量减少PCB的过孔数量,并减小从ADC电源引脚到去耦电容的走线长度,从而使ADC和电容之间的电感为最小。就像参考电压去耦一样,电路板设计师为了节省电路板面积有时会把去耦电容放在芯片下方PCB板的背面,基于同样的理由,这种情况也应避免。ADC数据手册一般会提供推荐的去耦方案。为了达到特定的性能,电源和地经常会采用专门的PCB层实现。

  数字输出

  ADC开关数字信号输出会产生瞬时噪声,并向后耦合到ADC中敏感的模拟电路部分,从而引发故障。缩短输出走线长度以减小ADC驱动的电容负载有助于减小这一影响,在ADC输出端放置串行电阻也可以降低输出电流尖峰。ADC数据手册通常对此也有一些设计建议。

  以上我们介绍了什么是ADC,ADC的技术参数指标及误区,并为大家详述了如何提高ADC性能的一些建议。下面我们将继续介绍ADC的一些具体设计中的问题,ADC输入噪声利弊分析、ADC输入转换器电路分析、ADC输入阻抗信号链设计等知识。详述了ADC的设计挑战,如何从高性能转向低功耗,也对ADC的不同类型数字输出进行了深解。

  ADC输入噪声利弊分析

  多数情况下,输入噪声越低越好,但在某些情况下,输入噪声实际上有助于实现更高的分辨率。这似乎毫无道理,不过继续阅读本指南,就会明白为什么有些噪声是好的噪声。

  折合到输入端噪声(代码跃迁噪声)

  实际的ADC在许多方面与理想的ADC有偏差。折合到输入端的噪声肯定不是理想情况下会出现的,它对ADC整体传递函数的影响如图1所示。随着模拟输入电压提高,"理想"ADC(如图1A所示)保持恒定的输出代码,直至达到跃迁区,此时输出代码即刻跳变为下一个值,并且保持该值,直至达到下一个跃迁区。理论上,理想ADC的"代码跃迁"噪声为0,跃迁区宽度也等于0.实际的ADC具有一定量的代码跃迁噪声,因此跃迁区宽度取决于折合到输入端噪声的量(如图1B所示)。图1B显示的情况是代码跃迁噪声的宽度约为1个LSB(最低有效位)峰峰值。

图1:代码跃迁噪声(折合到输入端噪声)及其对ADC传递函数的影响

  图1:代码跃迁噪声(折合到输入端噪声)及其对ADC传递函数的影响

  由于电阻噪声和"kT/C"噪声,所有ADC内部电路都会产生一定量的均方根(RMS)噪声。即使是直流输入信号,此噪声也存在,它是代码跃迁噪声存在的原因。如今通常把代码跃迁噪声称为"折合到输入端噪声",而不是直接使用"代码跃迁噪声"这一说法。折合到输入端噪声通常用ADC输入为直流值时的若干输出样本的直方图来表征。大多数高速或高分辨率ADC的输出为一系列以直流输入标称值为中心的代码(见图2)。为了测量其值,ADC的输入端接地或连接到一个深度去耦的电压源,然后采集大量输出样本并将其表示为直方图(有时也称为"接地输入"直方图)。由于噪声大致呈高斯分布,因此可以计算直方图的标准差σ,它对应于有效输入均方根噪声。参考文献1详细说明了如何根据直方图数据计算σ值。该均方根噪声虽然可以表示为以ADC满量程输入范围为基准的均方根电压,但惯例是用LSB rms来表示。

图2:折合到输入端噪声对ADC

  图2:折合到输入端噪声对ADC"接地输入端"直方图的影响(ADC具有少量DNL)

  虽然ADC固有的微分非线性(DNL)可能会导致其噪声分布与理想的高斯分布有细微的偏差(图2示例中显示了部分DNL),但它至少大致呈高斯分布。如果DNL比较大,则应计算多个不同直流输入电压的值,然后求平均值。例如,如果代码分布具有较大且独特的峰值和谷值,则表明ADC设计不佳,或者更有可能的是PCB布局布线错误、接地不良、电源去耦不当(见图3)。当直流输入扫过ADC输入电压范围时,如果分布宽度急剧变化,这也表明存在问题。

ADC输入转换器电路分析

  许多高精度模/数转换器的输入范围要求介于0.0V至5.0V之间。例如,MAX1402 (18位多通道Σ-Δ ADC)测量两个输入之间的差值。典型的单端应用中,该ADC将输入电压与固定的基准电压(例如2.500V)进行比较:ADCIN = 0V时,数字输出代表0V – 2.5V = -2.5V;ADCIN = 2.5V时,输出代表2.5V – 2.5V = 0V;而ADCIN = 5V时,输出则表示为5V – 2.5V = 2.5V。由此,数字输出范围对应于0V至5V的ADCIN为±2.5V。

  图1电路能够将±10.5V输入信号转换到MAX1402 ADC的输入量程(0V至5V)。ADC的两个通道(本案中的IN1和IN2)配置为全差分或高精度单端测量。R1、R2电阻分压器对输入进行变换,同时采用3.28V为输入提供偏压。当输入接地时,ADC输入以2.5V为中心(VIN = 0V时,ADC数字输出为0)。元件的精度保证了ADC的16位精度。

图1. 本电路使输入范围为0V至5V (单端或差分)的ADC能够处理±10.5V的输入范围。

  图1. 本电路使输入范围为0V至5V (单端或差分)的ADC能够处理±10.5V的输入范围。

  配置MAX1402为差分测量方式,可测量IN1和IN2之间的电压差。这些输入可接受±10.5V输入电压,而内部可编程增益放大器(PGA)用于提高小信号分辨率。例如,4倍增益可使ADC测量±2.625V输入信号时达到16位分辨率。

  单端测量可以将输入配置为两个独立通道,并将其与IN6的2.50V基准电压进行比较。如需更高精度,可以将ADC配置为差分输入,其中一个通道作为地电位检测输入。

  可以改变电阻分压器比例以适应不同的输入范围,但需要采用相同比例为电路提供偏压。例如,5:1的比例对应±15.0V的输入范围和3.00V偏压。校准系统时,只需将输入接地,并把输入接到已知电压,然后记录输出值即可。可以采用这两个值计算每个输入范围的偏压和增益系数。

  ADC输入阻抗信号链设计总结

  了解转换器阻抗是信号链设计的一个重要内容。总之,若非真正需要,为什么要浪费大笔资金去购买昂贵的测试设备,或者费力去测量阻抗?不如使用数据手册提供的RC并联组合阻抗并稍加简单计算,这种获取转换器阻抗曲线的方法更快捷、更轻松。

还应注意,工艺电阻容差可高达±20%。即使费尽辛苦去测量任何器件的输入或输出阻抗,也只能获取一个数据点(当然,除非测量多个批次的许多器件随温度和电源电压变

[1] [2]

关键字:模拟工程师  模数  转换器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/1101/article_17354.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
模拟工程师
模数
转换器

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved