如何估算采样时钟抖动

2012-10-17 15:52:35来源: 互联网

ADC 设计的最新进展极大地扩展了可用输入范围,这样系统设计人员便可以去掉至少一个中间频率级,从而降低成本和功耗。在欠采样接收机设计中必须要特别注意采样时钟,因为在一些高输入频率下时钟抖动会成为限制信噪比 (SNR) 的主要原因。本文章重点介绍如何准确地估算某个时钟源的抖动,以及如何将其与ADC 的孔径抖动组合。

  采样过程回顾

  根据 Nyquist-Shannon 采样定理,如果以至少两倍于其最大频率的速率来对原始输入信号采样,则其可以得到完全重建。假设以 100 MSPS 的速率对高达 10MHz 的输入信号采样,则不管该信号是位于 1 到 10MHz 的基带(首个Nyquist 区域),还是在 100 到 110MHz 的更高 Nyquist 区域内欠采样,都没关系(请参见图 1)。
 

  图 1 100MSPS 采样的两个输入信号显示了混叠带来的相同采样点

  在更高(第二个、第三个等)Nyquist 区域中采样,一般被称作欠采样或次采样。然而,在 ADC 前面要求使用抗混叠过滤,以对理想 Nyquist 区域采样,同时避免重建原始信号过程中产生干扰。

  时域抖动

  仔细观察某个采样点,可以看到计时不准(时钟抖动或时钟相位噪声)是如何形成振幅变化的。由于高 Nyquist 区域(例如,f1 = 10 MHz 到 f2 = 110 MHz)欠采样带来输入频率的增加,固定数量的时钟抖动自理想采样点产生更大数量的振幅偏差(噪声)。另外,图 2 表明时钟信号自身转换速率对采样时间的变化产生了影响。转换速率决定了时钟信号通过零交叉点的快慢。换句话说,转换速率直接影响 ADC 中时钟电路的触发阈值。

  图 2 时钟抖动形成更多快速输入信号振幅误差

  如果 ADC 的内部时钟缓冲器上存在固定数量的热噪声,则转换速率也转换为计时不准,从而降低了 ADC 的固有窗口抖动。如图 3 所示,窗口抖动与时钟抖动(相位噪声)没有一点关系,但是这两种抖动分量在采样时间组合在一起。
 

ADC的窗口抖动

  图3 ADC的窗口抖动

  图3还表明窗口抖动随转换速率降低而增加。转换速率一般直接取决于时钟振幅。

时钟抖动导致的 SNR 减弱

  有几个因素会限制 ADC 的 SNR,例如:量化噪声(管线式转换器中一般不明显)、热噪声(其在低输入频率下限制 SNR),以及时钟抖动(SNRJitter)(请参见下面方程式 1)。SNRJitter 部分受到输入频率 fIN(取决于 Nyquist 区域)的限制,同时受总时钟抖动量 tJitter 的限制,其计算方法如下:
 

  SNRJitter[dBc]=-20×log(2π×fIN×tJitter)??(2)

  正如我们预计的那样,利用固定数量的时钟抖动,SNR 随输入频率上升而下降。图 4 描述了这种现象,其显示了 400 fs 固定时钟抖动时一个 14 位管线式转换器的 SNR。如果输入频率增加十倍,例如:从 10MHz 增加到 100MHz,则时钟抖动带来的最大实际 SNR 降低 20dB。
 

  图4 SNR 随输入频率上升而下降

  如前所述,限制 ADC SNR 的另一个主要因素是 ADC 的热噪声,其不随输入频率变化。一个 14 位管线式转换器一般有 ~70 到 74 dB 的热噪声,如图 4 所示。我们可以在产品说明书中找到 ADC 的热噪声,其相当于最低指定输入频率(本例中为 10MHz)的 SNR,其中时钟抖动还不是一个因素。

  让我们来对一个具有 400 fs 抖动时钟电路和 ~73 dB 热噪声的 14 位 ADC 进行分析。低输入频率(例如:10MHz 等)下,该 ADC 的 SNR 主要由其热噪声定义。由于输入频率增加,400-fs 时钟抖动越来越占据主导,直到 ~300 MHz 时完全接管。尽管相比 10MHz 的 SNR,100MHz 输入频率下时钟抖动带来的 SNR 每十倍频降低 20dB,但是总 SNR 仅降低 ~3.5 dB(降至 69.5dB),因为存在 73-dB 热噪声(请参见图 5):
 

  图 5 产生的 ADC SNR 受热噪声和时钟抖动的限制
 

  现在,很明显,如果 ADC 的热噪声增加,对高输入频率采样时时钟抖动便非常重要。例如,一个 16 位 ADC 具有 ~77 到 80 dB 的热噪声层。根据图 4 所示曲线图,为了最小化 100MHz 输入频率 SNR 的时钟抖动影响,时钟抖动需为大约 150 fs 或更高。

  确定采样时钟抖动

  如前所述,采样时钟抖动由时钟的计时不准(相位噪声)和 ADC 的窗口抖动组成。这两个部分结合组成如下:
 

  我们在产品说明书中可以找到 ADC 的孔径口抖动 (aperture jitter)。这一值一般与时钟振幅或转换速率一起指定,记住这一点很重要。低时钟振幅带来低转换速率,从而增加窗口抖动。

  时钟输入抖动

  时钟链(振荡器、时钟缓冲器或 PLL)中器件的输出抖动一般规定在某个频率范围内,该频率通常偏离于基本时钟频率 10 kHz 到 20 MHz(单位也可以是微微秒或者绘制成相位噪声图),可以将其整合到一起获取抖动信息。但是,低端的 10kHz 和高端的 20MHz 有时并非正确的使用边界,因为它们调试依赖于其他系统参数,我们将在后面进行详细介绍。图 6 描述了设置正确整合限制的重要性。
 

  图 6 每十倍频计算得到的时钟相位噪声抖动影响

  图中的相位噪声图以其每十倍频抖动内容覆盖。我们可以看到,如果将下限设定为 100-Hz 或 10kHz 偏移,则产生的抖动便极为不同。同样地,例如,设置上整合限制为 10 或 20MHz,可得到相比 100MHz 设置极为不同的结果。

确定正确的整合下限

  在采样过程中,输入信号与采样时钟信号混频在一起,包括其相位噪声。当进行输入信号 FFT 分析时,主 FFT 容器 (bin) 集中于输入信号。采样信号周围的相位噪声(来自时钟或输入信号)决定了邻近主容器的一些容器的振幅,如图 7 所示。
 

  图 7 近区相位噪声决定主容器附近 FFT 容器的振幅

  因此,小于 1/2 容器尺寸的偏频的所有相位噪声都集中于输入信号容器中,且未增加噪声。因此,相位噪声整合带宽下限应设定为 1/2 FFT 容器尺寸。 FFT 容器尺寸计算方法如下:

  为了进一步描述该点,我们利用两个不同的FFT尺寸—131,072 和 1,048,576 点,使用 ADS54RF63 进行实验。采样速率设定为 122.88MSPS,而图 8 则显示了时钟相位噪声。
 

  图8 时钟相位噪声

  我们将一个 6-MHz、宽带通滤波器添加到时钟输入,以限制影响抖动的宽带噪声数量。选择 1-GHz 输入信号的目的是确保 SNR 减弱仅由于时钟抖动。图 8 表明两个 FFT 尺寸的 1/2 容器尺寸到 40MHz 相位噪声整合抖动结果都极为不同,而“表 1”的 SNR 测量情况也反映这种现象。

  设置正确的整合上限

  图 6 所示相位噪声图抖动贡献量为 ~360 fs,其频率偏移为 10 到 100MHz 之间。这比 100Hz 到 10MHz 之间偏移的所有 ~194 fs 抖动贡献值要大得多。因此,所选整合上限可极大地影响计算得到的时钟抖动,以及预计SNR匹配实际测量的好坏程度。

  要确定正确的限制,您必须记住采样过程中非常重要的事情是:来自其他尼奎斯特区域的时钟信号伪带内噪声和杂散,正如其出现在输入信号时表现的那样。因此,如果时钟输入的相位噪声不受频带限制,同时没有高频规律性衰减,则整合上限由变压器(如果使用的话)带宽和 ADC 自身的时钟输入设定。一些情况下,时钟输入带宽可以非常大;例如,ADS54RF63 具有 ~2 GHz 的时钟输入带宽,旨在允许高时钟转换速率的高阶谐波。

  若想要验证时钟相位噪声是否需要整合至时钟输入带宽,则需建立另一个实验。ADS54RF63 再次工作在 122.88 MSPS,其输入信号为 1GHz,以确保 SNR 抖动得到控制。我们利用一个 RF 放大器,生成 50MHz 到 1GHz 的宽带白噪声,并将其添加至采样时钟,如图 9 所示。之后,我们使用几个不同低通滤波器 (LPF) 来限制添加至时钟信号的噪声量。
 

加宽带白噪声的时钟相位噪声

  图9 加宽带白噪声的时钟相位噪声

  ADS54RF63 的时钟输入带宽为 ~2 GHz,但由于 RF 放大器和变压器都具有 ~1 GHz 的 3-dB带宽,因此有效 3-dB 时钟输入带宽被降低至 ~500 MHz。“表 2”所示测得 SNR 结果证实,就本装置而言,实际时钟输入带宽约为 500MHz。图 10 所示 FFT 对比图进一步证实了 RF 放大器的宽带噪声限制了噪声层,并降低了 SNR。
 

  图10 FFT 对比图

  该实验表明,时钟相位噪声必需非常低或者带宽有限,较为理想的情况是通过一个很窄的带通滤波器。否则,由系统时钟带宽设定的整合上限会极大降低 ADC 的 SNR。

  结论

  本文介绍了如何准确地估算采样时钟抖动,以及如何计算正确的上下整合边界。

关键字:估算  采样  时钟抖动

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/1017/article_17106.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
估算
采样
时钟抖动

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved