串行器与摄像芯片应用

2012-10-17 15:21:45来源: 互联网
串行器映射

为匹配MAX9268解串器摄像链路的输出接口,并行RGB数据应按照以下信号图映射。图4所示为MAX9268并行位与其摄像链路输出之间的映射,图5所示为相机链路的RGB数据映射。表1所示为MAX9259串行器的对应内容映射。


图4. MAX9268内部并行至输出映射


图5. 摄像链路内容映射

表1. MAX9259串行器RGB内容位映射
DIN0 DIN1 DIN2 DIN3 DIN4 DIN5 DIN6 DIN7 DIN8 DIN9
R0 R1 R2 R3 R4 R5 G0 G1 G2 G3
DIN10 DIN11 DIN12 DIN13 DIN14 DIN15 DIN16 DIN17 DIN18 DIN19
G4 G5 B0 B1 B2 B3 B4 B5 HREF VSYNC
DIN20 DIN21 DIN22 DIN23 DIN24 DIN25 DIN26 DIN27 DIN28  
  R6 R7 G6 G7 B6 B7      

色彩转换:YUV至RGB

FPGA芯片可将压缩(降低数据速率)后的摄像头数据YUV转换成RGB数据,用于MAX9259串行器。采用8位定点运算时,色彩空间转换的公式如下,式2和式3中,Dn和En的n为偶数。

Cn = Yn - 16

Dn = Dn + 1 = Un - 128

En = En + 1 = Vn + 1 - 128

Rn = clip((298 × Cn + 409 × En + 128) >> 8)

Gn = clip((298 × Cn - 100 × Dn - 208 × En + 128) >> 8)

Bn = clip((298 × Cn × 516 × Dn + 128) >> 8)

式中,>> 8表示“向右移8位”,clip表示“只取最低8位”。

FPGA方案

输入缓冲

输入缓冲电路包括计数器、三个寄存器和组合逻辑,将单字节时钟输入转换成三字节时钟输出,输出时钟速率为输入的一半。组合逻辑仅用于分别使能Y、U和V字节的对应寄存器。


图6. 输入缓冲电路

时钟开关

FPGA输出像素时钟速率为摄像头像素时钟的一半,用于驱动串行器像素时钟输入。但是,摄像头在初始化之前不会输出像素时钟。解决方案是在FPGA内部采用2:1时钟复用器(mux)和时钟信号检测器,mux由时钟信号检测器控制。上电时,mux的默认时钟来自摄像头的时钟振荡器,使SerDes芯片组提供启动摄像头的控制通道。时钟信号检测器对场同步信号脉冲进行计数,经过几个场同步脉冲后,mux切换到摄像头像素时钟速率的一半。采用高清摄像头传感器时,例如OV10630,每个场同步周期包含100k以上的像素时钟。几个场同步周期足以使摄像头的锁相环(PLL)达到稳定。场同步计数比像素时钟计数的效率高得多,并可节省FPGA逻辑单元的资源。

中间缓冲

格式转换表达式中没有体现硬件电路的延迟。为了从YUV输入生成RGB数据,需要两到三次乘法运算和三到四次加法运算。尽管FPGA逻辑电路(门电路) 的延时只有几个纳秒,但载波传输、加法器、移位乘法器都会导致不同程度的延时,使整体延时增大。为了使延迟最小化,每个常数乘法器均由两个移位输入(代表常数的2个非零最高有效位MSB)的加法器近似。输入的YUV字节速率大约为100MHz时,延迟会跨越相邻像素的定时边界,增大图像噪声。在每个乘法器之后通过中间寄存器来消除扩展延时。

以上提及的YUV至RGB彩色转换已用于Actel® ProASIC3 A3PN125Z FPGA,图7所示为实现这一FPGA的原理图。

 

   

 
清晰图像(PDF, 172kB) 清晰图像(PDF, 180kB)

图7. YUV至RGB转换器的FPGA实现

应用电路

厂家提供的摄像头芯片可能位于PCB子板,图8所示为摄像头子板模块的功能框图。输入包括电源、PWR和晶振时钟(XCLK)。输出信号包含并行数据位(D0..D9)、I²C总线(SDA、SCL)、视频同步(HREF、VSYNC)和像素时钟(PCLK)。


图8. 摄像头模块功能框图

图9所示为应用电路的FPGA和串行器芯片的原理图。电路通过两对双绞线组成的串行电缆供电,一对用于传输串行信号,另一对用于供电。独立的LDO电源IC用于串行器和FPGA器件。摄像头模块采用旁路电容,自带LDO电源芯片,进一步降低潜在干扰。FPGA和串行器之间的数据链路采用阻尼电阻。


清晰图像(PDF, 1.6MB)
图9a. 应用电路的FPGA部分


清晰图像(PDF, 533kB)
图9b. 应用电路的串行器部分

MAX9259也能够直接连接至摄像头传感器,例如OV10630,以构建更小的摄像头。彩色空间转换FPGA可置于解串器之后。由于这种应用需要摄像链路输出,可直接由MAX9268驱动,所以彩色转换FPGA置于摄像头传感器和串行器(MAX9259)之间。

视频采集示例

图10所示摄像头应用电路也是利用这些摄像头电路搭建的。


图10. 摄像头应用电路

结论

本应用笔记介绍Maxim的摄像头解串器IC与FPGA配合工作的典型方案。提供应用原理图和FPGA代码,用于现有的参考设计。即将给出本应用笔记的升级版:RAW RGB至24位RGB FPGA转换器。

 

关键字:串行  摄像芯片

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/1017/article_17079.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
串行
摄像芯片

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved