DAC及其缓冲器有助于提升系统性能与简化设计一

2012-10-03 16:27:41来源: 互联网

本文将考察一款新型精密16位DAC,同时针对性能可与变压器媲美的高速互补电流输出DAC的输出缓冲谈一些想法。

  电压开关式16位DAC提供低噪声、快速建立时间和更出色的线性度

  基于突破性10位CMOSAD7520--推出已近40年--的电阻梯乘法DAC最初用于反相运算放大器,而放大器的求和点 (IOUTA) 则提供了方便的虚拟地(图1)。

  

 

  图1. CMOS乘法DAC架构

  然而,在某些限制条件下,它们也可用于提供同相电压输出的电压开关配置 其中,运算放大器用作电压缓冲器(图2)。此处,基准电压VIN施加于OUT,输出电压VOUT,则由VREF提供。后来不久即出现了针对这种用途而优化的12位版本。

  

 

  图2. 电压开关模式下的乘法DAC

  快速推进到现在: 随着单电源系统的不断普及,设计师面对一个挑战,即在维持高电压下的性能水平的同时控制功耗。对能用于这种模式的更高分辨率(最高16位)的器件的需求也日益增加。

  在电压开关模式下使用乘法DAC的显着优势是不会发生信号反相,因此,正基准电压会导致正输出电压。但当用于该模式时,R-2R梯形架构也存在一个缺陷。相对于同一DAC用于电流导引模式的情况,与R-2R梯形电阻串联的N沟道开关的非线性电阻将导致积分线性度(INL)下降。

  为了克服乘法DAC的不足并同时保持电压开关的优势,人们开发出了新型的高分辨率DAC,比如AD5541A,(如图3所示)。AD5541A采用一个部分分段的R-2R梯形网络和互补开关,在16位分辨率下可实现±1-LSB精度,在?40°C至+125°C的整个额定温度范围内均无需调整,其噪声值为11.8 nV/√Hz,建立时间为1?s.

  

 

  图3. AD5541A架构

  性能特点

  建立时间: 图4和图5比较了乘法DAC在电压模式下的建立时间以及AD5541A的建立时间。当输出上的容性负载最小时,AD5541A的建立时间约为1?s.

  

 

  图4. 乘法DAC的建立时间

  

 

  图5. AD5541A的建立时间

  噪声频谱密度: 表1比较了AD5541A和乘法DAC的噪声频谱密度。AD5541A在10kHz下的性能略占优势,在1 kHz下优势非常明显。

  表1. AD5541A与乘法DAC的噪声频谱密度

  

积分非线性: 积分非线性(INL)衡量DAC的理想输出与排除增益和失调误差之后的实际输出之间的最大偏差。与R-2R网络串联的开关可能会影响INL.乘法DAC一般采用NMOS开关。当用于电压开关模式时,NMOS开关的源极连接至基准电压,漏极连接至梯形电阻,极由内部逻辑驱动(图6)。

  

 

  图6. 乘法DAC开关

  要使电流在NMOS器件中流动, VGS必须大于阈值电压, VT.在电压开关模式下, VGS = VLOGIC – VIN必须大于VT = 0.7 V.

  乘法DAC的R-2R梯形电阻设计用于将电流平均分配至各个引脚。这就要求总接地电阻(从各引脚顶部看)完全相同。这可以通过调节开关来实现,其中,各个开关的大小与其导通电阻成比例。如果一个引脚的电阻发生变化,则流过该引脚的电流将发生变化,结果导致线性度误差。VIN不能大到会使开关关闭的程度,但必须足以使开关电阻保持低位,因为VIN的变化会影响VGS 从而导致导通电阻发生非线性变化,如下所示:

  导通电阻的这种变化会使电流失衡,并使线性度下降。因此,乘法DAC上的电源电压不能减少太多。相反,基准电压超过AGND的值不得高于1V,以维持线性度。对于5V电源,当从1.25V基准电压变化至2.5V基准电压时,线性度将开始下降,如图7和图8所示。当电源电压降至3V时,线性度将完全崩溃,如图9所示。

  

 

  图7. INL of IOUT 乘法DAC在反相模式下的INL,( VDD = 5 V, VREF = 1.25 V)

  

 

  图8. INL of IOUT乘法DAC在反相模式下的INL(VDD = 5 V, VREF = 2.5 V)

  

 

  图9. 乘法DAC在反相模式下的INL( VDD = 3 V, VREF = 2.5 V)

  为了减少这种影响,AD5541A采用互补NMOS/PMOS开关,如图10所示。现在,开关的总导通电阻来自NMOS和PMOS开关的共同贡献。如前所示,NMOS开关的栅极电压由内部逻辑控制。内部产生的电压,VGN,设置理想栅极电压,以使NMOS的导通电阻与PMOS的相平衡。开关的大小通过代码调节,以使导通电阻随代码调节。因此,电流将上下调节,精度将得以维持。由于基准输入的阻抗随代码变化,因此,应通过低阻抗源驱动。

  

 

  图10. 互补NMOS/PMOS开关

  图11和图12所示为AD5541A在5 V和2.5 V基准电压下的INL性能。

  

 

  图11. AD5541A的INL( VDD = 5.5 V, VREF = 5 V)

  

 

  图12. AD5541A的INL( VDD = 5.5 V, VREF = 2.5 V)

关键字:DAC  缓冲器  系统性能

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/1003/article_17023.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
DAC
缓冲器
系统性能

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved