耳机放大器架构设置全新解决方案二

2012-09-29 16:56:03来源: 互联网

  

  图 6. AB 类接地置中耳机示意图

  G 类放大器一般使用多个电源电压,以发挥比 AB 类放大器更高的效率。在本例中,TI 最新的 G 类 DirectPath 放大器 (TPA6140A2) 首先将电池电压降低至较低的电压值,然后切换至低信号强度的低供应电压 (1.3V),并且只有在信号强度超出该低电源电压轨时,才切换至较高的电源电压 (1.8V)。这些适应性电源电压轨的升降速度高于音频,因此可避免失真或削波。此外,由于一般聆听的音频低于 200mVRMS,因此电源电压通常是最低值 (亦即 1.3V),并且提供优于上述 AB 类放大器的效率。在音频的无噪声阶段期间,整个电源轨的电压会降低,而且信号相当小。当音频变得大声时,放大器会切换至较高的电源轨,然后切换回较低的电源轨,导致整个输出 FET 的电压降幅缩小。图 7 的红色箭头表示此电压降幅。

  

  图 7. G 类接地置中耳机放大器运作

  其中的技巧是设计将电池电压降低至较低电压的放大器,并使用适应性电源轨 (分别有负电源轨) 降低播放音乐时整个输出 FET 的电压降幅。其中一种实现这类放大器的方式是,使用电荷泵作为图 8 所示的步降区块。某些工程人员偏好这类做法,原因在于步降电荷泵仅需要相对较小的飞驰电容(flying capacitor) (1μF 至 2.2μF),而这也是相对较小的组件

  

  图 8. 含电荷泵步降转换器的 G 类接地置中耳机简化示意图

  这类解决方案的主要缺陷是电荷泵的效率极差,而且这类解决方案无法令电池使用时间延长。较好的做法是整合 DC/DC 步降转换器,以有效降低装置的内部电源电压,并减少电池电流。

  

  图 9. 含 DC/DC 步降转换器的 G 类接地置中耳机简化示意图

图 9 显示 G 类接地置中耳机简化示意图。假设放大器的静态电流远小于流向负载的电流,即可推估电池电流是输出电流的分数 (见等式 4)。同样地,随着音频的变化,整个输出 FET 的电压降幅也会变动。此装置的功率损耗是电压降幅乘以电池电流 (IBATT) 的分数 (VDD/VBATT) 所得的乘积,因此,此装置将散失较少的功率。

  

  (等式 4)

  使用此解决方案的 G 类 DirectPath 耳机放大器为 TPA6140A2。此解决方案需要将外部电感用于步降转换器,但是,由于输出电流相当小,而且降压转换器的切换频率相对较高,因此可使用相当小的芯片电感,也就是 2.2uH 、 800mA 的 0805 尺寸电感。这能够使解决方案的效率提高,而没有上述电荷泵方法的电路板空间不足的缺点。

  AB 类及G 类接地置中架构的电池使用时间比较

  为证实 G 类 DirectPath 耳机放大器的效率优于传统 AB 类解决方案,我们在实验室进行了一项测试。图 10 是一般接地置中耳机与 TPA6140A2 的比较。其中,两个放大器都接上充满电力的锂离子电池。音频输入来自 PC,而输出驱动各个 32Ω 耳机。两个放大器持续播放相同的音频,而且以固定间隔测量电池电压。

  下图的 Y 轴表示电池电压,X 轴表示时间。绿线表示一般的接地置中耳机放大器,蓝线表示 G 类耳机放大器。

  

  图 10. AB 类与 G 类接地置中耳机放大器的比较

  相较于 AB 类 DirectPath 实作,TPA6140A2 可延长 50 小时或 45% 的电池使用时间。

  对于耳机放大器效率而言,必须考虑整体的系统功耗。举例来说,当今耳机的输出功耗远低于 MP3 编译码器的功耗。在未来,当这类编译码器功能提升到下一个制程技术节点时,该功能的功耗将进一步降低,但耳机放大器的输出功耗需求则不会降低。这表示,耳机放大器的效率将在下一代平台中扮演更重要的角色。图 11a 至 11b 阐明了这一点:

  

  图 11a.当今MP3 播放电流耗用量的范例

  

  图 11b.两年后 MP3 播放电流耗用量的范例

  图 11a 显示 G 类耳机放大器的平均电流耗用量大约是应用处理器的 10%。然而,几年后,当应用处理器电流降低至大约 10mA 时,G 类耳机放大器的电流耗用量将约为 现在的30%。

  结论

  电池使用时间一直是便携式应用的重要课题。相比含输出 DC 阻隔电容的传统 AB 类放大器,接地置中耳机放大器的音频性能较佳,但是因为需要使用电荷泵而使得效率降低。只有在信号强度需要进行切换时,才会切换两个以上的电压电源轨,使得 G 类放大器能够提升效率,也减少了不必要的功率损耗。TPA6140A2 等 G 类 DirectPath 耳机放大器结合了接地置中耳机放大器及 G 类放大器的优点。这能够有效降低不必要的放大器功率损耗,最终使得电池使用时间延长。

关键字:耳机  放大器  架构设置

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0929/article_16949.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
耳机
放大器
架构设置

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved