RFI整流原理分析方法

2012-03-27 16:16:23来源: 互联网

模拟集成电路中有一种众所周知却又了解不深的现象,即RFI整流,在运算放大器和仪表放大器中尤为常见。放大极小信号时,这些器件可以对大幅度带外HF信号进行整流,即RFI。因此,除所需信号外,输出端还会出现直流误差。不需要的HF信号可以通过多种途径进入敏感模拟电路。引入和引出电路的导体为进入电路的干扰耦合提供了通路。这些导体会通过容性、感性或辐射耦合拾取噪声。杂散信号会和所需信号一起出现在放大器输入端。杂散信号的幅度虽然可能只有几十毫伏,但是也会产生一些问题。简言之,敏感低带宽直流放大器未必总能抑制带外杂散信号。对简单的线性低通滤波器而言,情况确实如此,而运算放大器和仪表放大器实际上会对高电平HF信号进行整流,从而导致非线性和异常失调。本指南将讨论RFI整流的分析和预防方法。

  背景知识:运算放大器和仪表放大器RFI整流灵敏度测试

  几乎所有的仪表放大器和运算放大器输入级都采用某种类型的射极耦合BJT或源极耦合FET差分对。根据器件工作电流、干扰频率及其相对幅度,这些差分对可以像高频检波器一样工作。检波过程会在干扰的谐波频谱成分上产生噪声,同样也会在直流分量上产生噪声!从干扰中检测到的直流成分会转换放大器偏置电平,导致结果不准确。

  运算放大器和仪表放大器中的RFI整流效果可以通过相对简单的测试电路来评估,如RFI整流测试配置中所述。在这些测试中,运算放大器或仪表放大器增益配置为–100(运算放大器)或100(仪表放大器),直流输出在100 Hz低通滤波器后测量,以防来自其它信号的干扰。测试激励选用100 MHz、20 mVp-p信号,远高于测试器件的频率限制。操作时,测试可以评估存在激励时观察到的直流输出偏移。该测量的理想直流偏移为零,给定器件的实际直流偏移表示相对RFI整流灵敏度。采用BJT和FET技术的器件都可以通过该方法来测试,因为这些器件在高低电源电流水平下都可以工作。

  在原始运算放大器测试中,有些FET输入器件的输出电压不具有可观察的偏移,而其它有些器件则表现出小于10 μV的偏移(折合到输入端)。在BJT输入运算放大器中,偏移量会随着器件电源电流的增加而减小。只有两款器件不具有可观察的输出电压偏移,其它器件的偏移则小于10 μV(折合至输入端)。可想而知,其它运算放大器在接受此类测试时也会表

  现出类似模式。

  通过这些测试,可以概括出RFI整流的一些特点。首先,器件耐受性似乎与电源电流成反比,也就是说,在低静态电源电流下偏置的器件具有最高的输出电压偏移。其次,具有FET输入级的IC似乎比具有BJT的IC不易受整流影响。注意,无论是运算放大器还是仪表放大器,这些特点都是独立的。实际上,这意味着低功耗运算放大器或仪表放大器更易受RFI整流影响。而且,FET输入运算放大器(或仪表放大器)更不易受RFI整流的影响,在较高电流下工作时尤为如此。

  根据上述数据和BJT与FET的基本差异,我们可以总结一下之前了解的内容。双极性晶体管效应受正偏PN结(基极-发射极结)的控制,该结点的I-V特性具有指数特性和明显的非线性。另一方面,FET特性受施加到反向偏置PN结二极管上电压的控制(栅极-源极结)。FET的I-V特性满足平方律,因此,本身就比BJT更具有线性。

  对低电源电流器件而言,电路中的晶体管经过偏置后,电流远低于其峰值fT集电极电流。虽然IC构建所用的工艺涉及的器件fT可达几百MHz,但是晶体管在低电流水平下工作时,电荷跃迁时间会增加。采用的阻抗水平也使这些器件中的RFI整流变得更差。在低功耗运算放大器中,阻抗约为几百到几千千欧,而在中等电源电流设计中,阻抗可能不超过几千欧。在这些因素的共同作用下,低功耗器件的RFI整流特性变差。

  图1总结了关于RFI整流灵敏度的一般性观察,运算放大器和仪表放大器均适用。

  

G010.jpg

 

  图1:关于运算放大器和仪表放大器输入级RFI整流灵敏度的一些一般性观察

  分析方法:BJT RFI整流

  实验表明,与具有FET输入的类似器件相比,BJT输入器件具有更高的RFI整流灵敏度,可以采用分析性更强的方法来解释这一现象。

  RF电路设计人员早就知道,由于具备非线性I-V特性,PN结二极管是有效的整流器。HF正弦波输入的BJT晶体管电流输出频谱分析表明,器件偏置越接近“膝部”,非线性就越高。这会进而使其用作检波器时更为有效。这一点在低功耗运算放大器中尤为重要,此时输入晶体管在极低集电极电流时会发生偏置。

  参考文献1中说明了BJT集电极电流的整流分析方法,在此恕不赘述,除非需要作出重要结论。这些结果表明,原始二次二阶项可以简化为频率相关项△ic(AC)(两倍输入频率下)和直流项△ic(DC)。后一项可以采用公式2表示,整流直流项的最终形式为:

  

G011.jpg

 

  公式1

  该公式表明,二阶项的直流成分与HF噪声幅度VX的平方以及晶体管的静态集电极电流IC成正比。为了表明整流的这一特点,注意,在IC为1 mA条件下工作、具有10 mVpeak高频信号冲击的双极性晶体管的直流集电极电流变化约为38μA。

  减少整流集电极电流需要减少静态电流或干扰幅度。由于运算放大器和仪表放大器输入级很少提供可调整静态集电极电流,迄今为止,减少干扰噪声VX水平还是最佳(也几乎是唯一)解决方案。例如,将干扰幅度减少2倍至5 mVpeak后,会使整流集电极电流产生4到1的净减少量。显然,这说明必须使杂散HF信号远离RFI敏感放大器输入端。

分析方法:FET RFI整流

  参考文献1中也说明了JFET漏极电流的整流分析方法,在此恕不赘述。类似的方法也用于FET漏极电流整流分析,该电流与施加到其栅极的小电压VX成函数关系。公式2概括了FET漏极电流二阶整流项的评估结果。和BJT一样,FET二阶项也有交流和直流成分。此处给出了整流漏极电流直流项的简化公式,其中整流直流漏极电流与杂散信号,即VX幅度的平方成正比。

  但是,公式2也说明,由FET和BJT产生的整流度的差异非常重要。

  

G012.jpg

 

  公式 2

  但是,在BJT中,集电极电流的变化与其静态集电极电流水平存在直接关系,JFET漏极电流的变化与处于零栅极-源极电压的漏极电流IDSS成正比,与其通道夹断电压VP的平方成反比,参数为几何参数,取决于过程。通常,用于仪表放大器和运算放大器输入级的JFET偏置时的静态电流约0.5·IDSS。因此,JFET漏极电流的变化与其静态漏极电流无关,所以也和工作点无关。

  图2所示为BJT和FET之间二阶整流直流项的定量比较。本例中,双极性晶体管具有576μm2的单位发射面积,相对于用于20μA IDSS和2 V夹断电压的单位面积JFET。每个器件都在10μA条件下偏置,工作温度TA = 25℃。

  

G013.jpg

 

  图2:BJT与JFET相对灵敏度比较

  在相同的静态电流水平下,双极性晶体管中集电极电流的变化比JFET漏极电流的变化约大1500倍,这一结论非常重要。这就可以解释为什么FET输入放大器表现出的灵敏度小于大幅度HF激励。因此,它们可以提供更多RFI整流抗扰度。

  根据上述内容,可以作出如下总结:由于用户几乎无法查看放大器的内部电路,防止因RFI导致IC电路性能下降对IC外部电路而言就显得尤为重要。

  上述分析表明,无论采用哪种类型的放大器,RFI整流都与干扰信号幅度的平方成正比。因此,为了尽可能减少精密放大器中的RFI整流,必须在输入级之前减少或消除干扰电平。减少或消除干扰噪声的最直接方法是适当滤波。

  减少运算放大器和仪表放大器电路中的RFI整流

  EMI和RFI会严重影响高精度模拟电路的直流性能。由于带宽相对较低,精密运算放大器和仪表放大器不会精确放大MHz范围内的RF信号。但是,如果这些带外信号能够通过精密放大器的输入、输出或电源引脚耦合至精密放大器,这些信号就会通过各种放大器结点进行内部整流,并最终在输出端导致不必要的直流失调。之前关于该现象的理论探讨已经说明其基本机制。下一步要介绍合适的滤波如何减少或消除这些误差。

  合适的电源去耦可以将IC电源引脚上的RFI降至最低。放大器输入和输出还需要在器件级进一步探讨。此时,假定系统级EMI/RFI方法已经实现,如紧凑的RFI外形、正确接地的屏蔽层、电源轨滤波等。这些后续步骤可视为电路级EMI/RFI防护。

  运算放大器输入

  防止输入级整流的最佳方法是采用靠近运算放大器输入的低通滤波器,如图3所示。

  

G014.jpg

 

  图3:用于运算放大器电路的简单EMI/RFI噪声滤波器

  在左侧示意图的反相运算放大器中,滤波器电容C位于等值电阻R1-R2之间。由此可以得出简单的转折频率表达式,如图所示。在极低频率或直流情况下,电路的闭环增益为–R3/(R1+R2)。注意,C不能直接连接至运算放大器的反相输入,否则会产生不稳定性。所选的滤波器带宽至少为信号带宽的100倍,以便将信号损失降至最低。

在右侧示意图的同相运算放大器中,电容C可以直接

[1] [2]

关键字:RFI  整流原理  分析方法

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0327/article_15468.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
RFI
整流原理
分析方法

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved