机器视觉在光纤端面缺陷检测中的应用

2012-03-22 17:28:46来源: 互联网
本文介绍了如何利用机器视觉进行光纤端面的缺陷检测,并使用美国国家仪器(NI)公司的VBAI视觉自动检测开发环境完成了机器视觉系统的开发。VBAI(Vision Builder for Automated Inspection)是NI推出的一款视觉检查软件,作为自动检测的视觉生成器。此工具是实验室进行快速视觉效果验证的理想工具,也是很好的生产线简易测试平台。结果显示,该系统能够比较精确地检测出缺陷所在位置及其大小,速度较快,达到了对光纤端面缺陷检测的要求。

  1 检测系统

  本文所提出的光纤端面缺陷机器视觉检测系统由光纤端面检测仪以及PC系统组成。检测的时候将光纤活动连接器插入光纤端面检测仪的固定测试平台中,而光纤端面检测仪通过USB线连接到PC系统上,这样就能将图像采集到电脑里。调整显微镜焦距,一旦得到了满意的图像,就启动软件对光纤端面进行分析,与软件预设的标准指标进行比较,从而定量地确定各区域信息,判断该光纤端面合格与否。

  该系统的检测效果与软件的能力、显微镜性能以及操作人员对焦图像的技能有关,已经证明了其在准确性、可重复性、再现性以及检测效率等方面明显优于人工检测。该方案还可以提供检测结果的具体记录,包括端面图像和损伤检测数据等,提高系统的自动化程度。

  2 检测过程

  本系统所使用的检测软件是基于VBAI视觉自动检测开发环境开发的,具备对光纤端面图像进行处理和分析的能力,其处理流程如图1所示。

  

  在使用光纤端面检测仪对光纤端面进行图像采集的时候,由于光纤端面每次出现在视野范围中的位置都有所不同,所以首先要对光纤端面纤芯的位置进行定位才能对其进行一系列的检测。要定位纤芯的位置,首先需要将采集到的图像二值化。因为通过光纤端面检测仪采集得到的初始图像为32位的,而在VBAI中对图像分析处理的函数模块基本上都是不支持32位图的,所以只有把32位图转化成二值图像,才能对其进行一系列精确的分析。使用VBAI的视觉助手(Vision Assistant)函数模块对初始图像进行图像处理,通过抽取色彩值(Extract HSL)的子函数即可得到灰度8位图,然后使用阈值法将图像二值化。

  阈值法是一种简单而且有效的图像分割方法,此方法是用一个或几个阈值将图像的像素灰度级分为几个级别,属于一个级别的像素点被认为是同一类物体。需要注意的是,在光纤端面检测的过程中,由于包层可能会和包层外的脏污属于同一个灰度级,所以在对包层外的脏污检测的时候是不能同时对包层上的脏污进行检测的,需要将包层屏蔽以后再检测。

  在本系统中,设F(x,y)表示对图像二值化的输出,其像素灰度级范围为[a,b],对同一类型的缺陷检测时只需要设定一个a和b之间的阈值TH,把图像的像素分成大于TH的像素群(缺陷)和小于TH的像素群(背景)两部分。即:

  

  图像二值化将缺陷像素点的灰度值设为0,背景像素点的灰度值设为1。在VBAI的视觉助手函数模块中就有设置阈值(Threshold)的函数子模块,调用的时候只需要在阈值直方图上根据双峰法找到波峰与波谷,并手动调整阈值的大小,使其能将缺陷与背景区分开来即可,如图2所示。

  

2.1 纤芯的定位

  本文定位光纤纤芯所使用的是方法是先找到光纤的整个包层,由于光纤包层的形状是一个圆,而这个圆的圆心就是纤芯的中心了。光纤端面存在较大程度的污染的话,如果只是设置一定的阈值将图像二值化,得到的二值图像除了光纤包层外还可能会有很多脏污,这样就会对光纤包层的定位产生很大的影响。所以二值化图像后还需要使用视觉助手里的一些子函数模块对图像进行一些形态学的处理,使用移除小颗粒(RemoveSmall Objeets)和移除大颗粒(Remove Large Objects)这两种函数子模块,调整迭代次数的大小,把比光纤包层小和比光纤包层大的颗粒都滤掉,从而除去对光纤包层定位的干扰,使得到的二值图像里只有光纤包层的图像,如图3所示。

  

  得到光纤包层的二值图像后,利用VBAI中寻找圆边缘(Find Circular Edge)以及建立坐标系(Set Coordinate System)的函数模块,即能准确地定位光纤纤芯的位置。寻找圆边缘是为了寻找光纤包层圆的边缘,从而寻找到光纤包层圆的圆心,这个圆心也是纤芯圆的圆心,然后以这个圆心为坐标系原点建立坐标系。在VBAI中,建立坐标系这个函数的功能是定位特征,它能根据寻找到的包层圆自动定位圆心,即使包层在图像中的位置改变,坐标系原点也能准确地定位在包层圆的圆心上,而包层圆的圆心就是纤芯圆的圆心。由图4可见,坐标系的原点可以很精确地定位在位置不同的纤芯圆的圆心上,即使是在不规则的包层面上。

  2.2 检测区域的划分

  在定位了光纤纤芯之后,由于在光纤端面上不同圆环范围内所用的检测标准也不同,所以要以纤芯中心为圆心作不同区域的圆环,再在每个圆环内按规定的检测标准进行检测。如果有任意一个圆环内的检测不能通过,则这个光纤就是有缺陷的,不能通过。在划分区域的时候,由于通过光纤端面检测仪采集得到的图像在VBAI环境下是以像素(pix)为计量单位的,而一般检测标准中给出的光纤端面检测要求是以微米(μm)为计量单位的,所以要通过公式(2)进行转换将微米(μm)转换成像素(pix)。转换的时候需要知道一个参数:dpi(每英寸多少点),知道了dpi就可以从公式(2)得到像素与微米的转换关系。设P为像素,D为dpi,I为英尺,M为微米,则:

  

c.jpg

 

  一张图片的dpi可以通过一些常用的看图软件得到(如Acdsee,Photoshop等),平时所用的640×480或800×600等标准的分辨率的dpi是一个常数:96。这样在对光纤端面进行区域划分的时候,就能准确地算出每个圆环的直径,从而对整个光纤端面可以进行细致并且精确的检测。

  2.3 缺陷的检测

  2.3.1 不同的阈值

  光纤端面缺陷包括白点(崩缺)、黑点(脏污)、阴影(内裂)以及划痕。其中崩缺和划痕是颜色亮于光纤端面的部分,而脏污和阴影是颜色暗于光纤端面的部分。要检测出这些缺陷,对每个区域的每个亮部检测前都要重新对原始图像进行一次图像处理,同时对每个区域的每个暗部检测前也要重新对原始图像进行一次图像处理,以便设置不同的阈值以区分出比光纤端面亮的部分和比光纤端面暗的部分。这样在检测过程中就先后对暗部和亮部进行了检测,如果两者中任何一种检测不能通过,则这个区域的检测就是不能通过的。

  光纤端面需要进行检测的区域包含了光纤包层和光纤包层以外的陶瓷部分,所以亮色缺陷和暗色缺陷除了分布在光纤包层上外还有可能会分布在陶瓷面上。由于光纤包层在采集的图像中是暗色的,与暗色的缺陷色度比较接近,而包层外的陶瓷部分色度则更接近于亮色的缺陷。所以检测光纤包层上和包层外陶瓷面上的缺陷时,针对暗色缺陷和亮色缺陷都需要分别设定不同的阈值,才能准确地检测出整个端面的缺陷。因此利用VBAI检测光纤包层外的陶瓷面区域时,需要重新根据双峰法设定阈值,如图5所示。

  

  由图5可见,在检测的过程中,必须要针对暗色缺陷和亮色缺陷在光纤端面包层内外的不同分布,分别设定不同的阈值,否则会极大的影响检测的精确度。需要注意的是,纤芯本身就是亮色的,所以亮色缺陷检测过程中需要把纤芯忽略掉。

2.3.2 缺陷的判定

  在光纤端面缺陷检测中,既有不能接受的缺陷,也有可以接受的缺陷,对于崩缺、脏污、内裂和划痕这类缺陷颗粒,鉴定其能不能被接受就取决于它们的大小与长度。一般,评价它们的大小与长度主要是根据其费雷特直径(Feret Diameter)的大小。费雷特直径是一种常用的颗粒直径表示方法,对于规则的球形颗粒,可以用“直径”来精确描述其大小,但是绝大多数情形下颗粒尤其是划痕的形状都不是球形,用直径表示显然欠确切,也容易引起误解。因此,表示颗粒大小引用“颗粒直径”的概念。所谓颗粒直径,即表示颗粒大小的“一因次”尺寸。“因次”又称为量纲,是基本物理量的度量单位,例如长短、体积、质量、时间等等。同一颗粒,由于应用场合不同,测量的方法也往往不同,所得到的颗粒直径的值当然也不同,如:在显微镜下观察到的是颗粒在与视线垂直的平面上的尺寸,筛分所得到的粒径是筛孔尺寸,沉降所得到的是某种沉降特性相同的球形颗粒的直径等。

  本文的光纤端面缺陷机器视觉检测中,二值化图像后要测量的缺陷的费雷特直径即是在显微镜下与视线垂直的平面上的尺寸。任何一个不规则物体的费雷特直径都有大有小,通常所需要得到的是最大的费雷特直径,然后和检测标准进行对比,如果最大费雷特直径大于可以接受的缺陷颗粒直径,则检测不能通过。VBAI的功能非常强大,它提供了能够直接测量最大费雷特直径(Max Feret Diameter)的函数,由此便可以方便快捷地测出各种缺陷颗粒的最大费雷特直径大小,包括线性特征的划痕,划痕的最大费雷特直径就是其长度。在VBAI的视觉助手函数模块中有一个质点过滤(Particle Filter)的子函数模块,它可以设定一定范围的最大费雷特直径值,然后将最大费雷特直径处于这个范

[1] [2]

关键字:机器视觉  光纤端面  缺陷检测

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0322/article_15384.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
机器视觉
光纤端面
缺陷检测

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved