高频四象限电流乘法器电路设计

2012-03-16 13:51:26来源: 互联网

本文提出了一种高频四象限电流乘法器。该乘法器电路结构对称。提出的乘法器电路工作在±1.18 V的电源电压下。由于从输人端到地的低寄生电容,该电路可以工作在高频条件下,实验测得它的-3 dB带宽可以达到1.741GHz。

1 电路工作原理
    本文提出的这种电流乘法器是基于图1所示的基本的单元电路而设计成的。图1所示的电路,输出电流Iout和输入电流Iin是二次函数的关系。这种二次单元电路是由MN、MP和MC组成的。其中MN和MP是偏置工作在三极管区,MC是工作在饱和区。如果MN和MP有相同的跨导因子(kP=μPCOXWP/LP=kN=μNCOXWN/LN=k),从图1可以很容易得到输入电压Vin和输出电流的Iout的表达式如下:

    

很显然,二次单元电路带来了输出电流和MOS管漏极电流的二次函数的关系。在图2中显示了提出的四象限电流乘法器电路。图2中用到的电流模减法器电路如图3所示。这里用到的减法器不同于文献中的电压减法电路。图2电路是由4个二次单元电路构成。该乘法器的输入电流是输入电流IX和IY的和与差。通过使用由式(2)所得到的输出电流和输入电流的二次关系,可以得到MOS管MC1,MC2,MC3和MC4的漏极电流的表达式如下:

    

    从图2可以看出,由于IO1是IC1和IC2的和,而IO2是IC3和IC4的和,因此可以推导出IO1和IO2表达式如下:

    

    这种四象限乘法器的输出电流Iout是IO1和IO2的差,由如下表达式给出:
    h.jpg
    可以看到在公式(9)中,输出电流IOUT等于电流IX和IY的乘积,伴有一个由跨导因子K和依赖于电源的参数a决定的乘法增益因子。很显然,可以通过调节跨导参数k和参数a,来调节乘法器的增益。参数k和MOS管的尺寸直接相关。减小跨导参数k或MOS管的尺寸,带来了较高的增益和较低的功耗,同时由于与MOS管相关的较小的寄生电容的作用,使得电路的速度也改进了。但是,减小参数k,仍需慎重考虑。因为较小的跨导参数k会带来较低的线性度和较小的静态电流,而这会降低输入电流的范围。相反,大的参数值k会带来较大的静态电流,因此会有较大的电流输入范围。但是这就会增加电路的总功耗。显然,参数k的选择要求最佳化。当然,也可以通过调节电源依赖因子a来调节调节电路的增益。a的大小直接决定了电路的功耗和输人工作电流的范围。

 

2 电路仿真结果
    对图2所示乘法器的性能使用Hspice仿真软件进行仿真验证,其中MOS晶体管模型参数由标准的0.35μm CMOS工艺提供。所有NMOS管和PMOS管的阈值电压分别为0.53~0.69 V。MOS管的宽长比设置如下:M1P~M4P,60μm/0.7μm,MIN~M4N,20μm/0.7μm,MC1~MC4,25μm/0.7μm,M5~M8,25μm/0.7μm。电源电压为±1.18 V。图4显示了电流乘法器电路在输入电流IY在-20~20 μA范围内变化时的直流传输特性曲线。在图4中,从右下到右上的5条曲线分别是输入电流IX为-20μA,-10μA,0μA,10μA和20μA时的输出电流Iout随输入电流IY变化的直流传输特性曲线。

 

 


    图5显示了提出的乘法器电路的频率响应曲线。在仿真过程中,输入电流IX为正弦信号电流,同时输入电流IY保持为10μA。由图5可以看到,电路的电流标准分贝增益随频率变化,所设计的乘法器电路展示出了良好的频率特性,得到的-3 dB带宽为1.741 GHz,远远超过了文献中提到的(413MHz)。这是由于电路中从输入端到地的寄生电容减小的缘故。整个电路的功耗为1.18mW。

3 结语
    本文提出了一种低压高频四象限电流乘法器电路。该乘法器电路的优点是电路结构简单而且对称。电路可以工作在高频条件下(f-3dB= 1.741 GHz),整个电路的功耗为1.18mW。

关键字:高频  四象  限电流  乘法器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0316/article_15122.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
高频
四象
限电流
乘法器

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved