组建光通信网的合理途径

2012-03-05 15:43:10来源: 互联网
一、通信网的业务重心转移和容量扩大

组建光网(Optical Networking)是当今国际上通信领域中一个热门的重大课题,对于陆地的固定通信网,除了光纤光缆及波分多路系统正在点一点传输线路上大量并继续改进技术以扩大应用效果外,通信研究人员也在考虑设计和试验在通信网核心内部如何利用波分多路(WDM)技术使电传送网进化为光传送网,认为这是未来通信网必然的趋向。

自20世纪90年代起,国际互联网Internet向全世界机用户开放,促使数据通信的业务量爆炸性增长,给传统电话通信网以巨大冲击。今后的通信形势是:尽管全世界的电话业务量仍是每年增长,但数据通信业务量的年增长率远远大于电话业务量的增长率,因此在21世纪里数据业务总量将很快赶上电话业务总量。换句话说,未来的通信网不再以电话业务为重心,而是以数据业务为重心,宜于使用互联网规约IP(Internet Protocol)。传统电话通信网长期使用的电路交换方式,在未来通信网不再合适,应该让位给对数据通信有利的分组交换方式(packet switching)。当然,未来的通信网仍应保证电话业务畅通,而且IP-phone仍须达到传统电话QoS的要求并保证数字图视(video)通信业务畅通,以致能够实现计算机操作的多媒体通信。

与此同时,通信网的核心本身总是应该具有足够大的容量,有能力适应各种通信业务量的数字速率总和,保证通信畅通,通信网容量就以它同时提供数字速率多少来表示。现在大家既然认识到各种通信业务特别是数据通信业务量每年以很高的增长率快速增长,未来的通信网就应该相应地扩大其容量。一方面,通信网绝对不停留于长期使用的公用交换电话网每年缓慢增长的容量,而是提供大得多、能够经常加大的容量。按数字速率计,现行的电通信网利用电的时分多路TDM技术,按照标准的同步数字群系列SDH,最高的数字速度限于最高一级数字群的速度,即10Gbit/s。在,该数字速度尚未能突破,这是受到电的TDM技术的限制,常称“瓶颈”。最近,国际会议上个别研究单位称他们利用电的TDM,能够制成数字速度达40Gbit/s,但这是少数情况,目前还未能普遍推广。 

二、通信网从电的TDM发展至光的WDM

既然电的通信网在容量上受到电的TDM的限制,那么就应考虑其它有效而实际可行的办法。光纤通信的传输线路在加大容量方面取得了显著的成功经验,似乎可以为通信网提供有益的。在原来的光纤线路上,一根光纤只传输一路光载波,其载荷的数字信号由电的TDM供给,最高数字速率为10Gbit/s,而单模光纤在波长1550nm有很宽的窗口可供光信号传输,虽然一个光载波载荷信号的数字速率受到电的TDM限度不能提高,但如能让一根光纤同时传输几个光载波,则光纤的传输容量就可以成倍地加大,将光纤的潜在容量发掘利用。参照过去几十年前通信线路的每对铜线利用频分多路FDM技术实现多路载波电话的成功经验,考虑在光纤上采用波分多路WDM技术,实现一根光纤同时传输多路光载波的办法。如每一根光纤上装用户路WDM,每路传输电的TDM信号10Gbit/s,那么n路WDM就使一根光纤在一个方向同时传输n×l0Gbii/s,使数字速率比原来提高n倍,这种办法不难取得成功,完全可以推广应用。最近国际会议上报道一根光纤在1550nm波长窗口同时传输密集波分多路DWDM的100路具有适当波长间隔的光载波,导致同时传输的数字速率提高至100×l0Gbii/s=1Tbit/s (1×1012bit/s)。而且,还有可能继续提高至几个Tbit/s。这样的DWDM系统用于光纤线路,配以在1550nm波长窗口提供光功率增益的宽带光纤放大器W-EDFA,沿线路每隔100km设置一个放大器,就可使1Tbit/s数字速率的信号传输至1000km距离,实现大容量、长距离的信号传输。 

诚然,这种1Tbit/s-1000km的大容量、长距离的通信系统真是通信领域的卓越贡献,大家都深切体会到光比电有更大的潜力为通信的发展提供帮助。传统的电通信应该引伸至光通信,尤其在考虑通信网扩大容量的,不能停留于电,而应着眼于光。依这样的思路进一步深入考虑光在通信网的实际应用可能性。现在波分多路WDM技术结合光放大器EDFA的方式,不应局限于光纤传输线路的应用,而是要求放开思路,研究光的WDM技术能否引伸至通信网核心内部,代替原来利用电的TDM技术所起的作用。过去的电通信网虽然利用大容量光纤传输线路,但通信网本身由电的TDM起作用,通信网容量的数字速率属于Gbit/s级,最大是10Gbit/s。现在利用光的WDM,有n路不同波长操纵各种单元,则使通信网容量加大n倍。如用100路不同波长,则上应能使通信网容量加大至Tbit/s级,比电的通信网容量Gbit/s级大一千倍。这就是说,电通信网受到TDM的限制,无法再扩大容量,如改用光通信网,WDM可以使用很多路数,以致光通信网可以扩大容量至很多倍。所以,随着通信业务量的快速增长,要求通信网扩大其容量,从电的通信网进化为光的通信网。

顺便提一下,上面说起电的TDM技术目前最高数字速率为10Gbit/s。曾有研究单位宣称光的TDM技术可使16路电的TDM复合,使总的数字速率提高至16×10=160bit/s,但这样的技术有较大难度,目前没有推广使用。 

三、网络单元ADM、DXC过渡至OADM、0XC

每个通信网由若干种和若干个网络单元分别组合而成。多路通信不论是电的时分多路TDM,或者是光的波分多路WDM,最基本的网络单元有multiplexer和demultiplexer,一般地称为复接器和分接器。它们在TDM结点与用户接入线连接处,一般称为合路器和分路器,而在结点内部,则称为合群器和分群器。对于电话通信,合路器是把30路数字电话合为一个基群,如30路经过脉码调制PCM得到的数字电话信号64kbit/s合为30路的基群,约2Mbit/s。而分路器的作用相反,它把基群2Mbit/s分为30路64kbit/s。合群器是把若干个低级群合为较高级的数字群。例如在准同步数字群系列PDH,最低的合群器是把4个基群2Mbit/s合为二级群8Mbit/s。分群器则相反,把1个8Mbit/s群分为4个2Mbit/s群。在同步数字系列SDH,例如最高级的合群器是把4个2.5Gbit/s合为1个10Gbit/s,分群器则把1个10Gbit/s分为4个2.5Gbit/s。数字速率越高,则制成合群器和分群器的技术难度越大。类似地,在光的WDM复接器和分接器可以称为合波器和分波器,前者把几路不同的光波长合为一个波段,后者把一个光波段分为若干路光波长。

在每一网络结点,其他重要的网络单元有ADM(add-drop multiplexer),简单译成插分复接器,实际上它是分群器与合群器的组合,或是分路器与合路器的组合。在结点内部,某一高级数字群输入分群器,分为若干个较低级数字群输出,其中部分低级数字群就从这分群器输出分下(drop),由本结点使用,其余几个输出直通合群器的输入,结点可以按需要把几个与分下相同的低级群插上(add)合群器的输入,与直通的低级群会合,成为新的高级数字群输出。在电的通信网中,这些是“数字的ADM”。当电通信网准备过渡为光通信网时,网络结点中的这些数字的ADM应该全部换成“波长的ADM”或“光的ADM”。它将是分波器与合波器的组合。 

在网络结点中,为了灵活调度的需要,都应设置交叉连接系统XC(cross-connect)。在电通信网的结点有“数字的交叉连接”DXC(digital XC)。当电通信网过渡至光通信网时,每一网络结点中数字交叉连接应该相应地换成“波长的XC”或“光的XC”,原理与前相似。但因光网容量较大,交叉连接系统势必更为复杂,并且需要更加灵活地运用,所以OXC常常附设波长变换器,以便于实行交叉连接时按需要改换使用光波长。总的来说,光通信网不仅容量大,而且质量高,光网结点中光的ADM(OADM)和光的XC(OXC)等网络单元都必须具备完善的结构和优良的性能,那就完全能够满足大容量通信网运行的需要。


四、IP与ATM、WDM的配合

未来的通信网既已肯定以数据信息业务为重心,并普遍使用互联网规约IP,那么网上信息业务宜一律使用IP,即所谓everything over IP。当然,每种信息业务都用IP后,仍保证信息顺利传送,达到应有的QoS要求。使如IP-phone,经过初步改进技术,确实具有良好质量,双向实时通话的质量能够为用户所接受,所以,在未来通信网中普遍使用IP是可行的。尤其是通信网中使用IP路由器(router),在技术上似乎没有多大困难,IP的标头在国际上屡有新标准,不断作出改进。但是,通信网内部还有重要的交换机迄今尚未完全做成对应数据通信业务、具有分组交换功能的简便装备。而在现行宽带通信网中使用较多、技术上比较成熟的异步转移模式ATM,其装备受到国际上广大通信厂商重视和改进,在性能和服务上又普遍为广大通信用户所接受。虽然ATM不是专供数据通信分组交换的设施,但是它已在世界上推广使用。因此得出权宜的结论:可以让IP与ATM配合
[1] [2]

关键字:组建  光通信  合理途径

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0305/article_14731.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
组建
光通信
合理途径

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved