利用GaAs PHEMT设计MMIC LNA

2012-02-11 13:34:04来源: 互联网
在通信接收器中低噪声放大器(LNA)对于从噪声中析出信号十分关键。控制系统内噪声还有其他技术,包括过滤和低温冷却,但低噪声放大器的良好性能,提供了一种被实践所验证的可靠的管理通信系统噪声的方法。随之而来的是对工作于X频段(8GHz)的低功率(电池供电)LNA设计的探索。设计比较了在目标是工作于的几毫瓦DC电源的单片微波集成电路(MMIC)中,GaAs PHEMT增强型(E模式)和耗尽型(D模式)晶体管的使用。

  低功率工作目标与处理不必要的(blocking)信号的应用相互矛盾。这类应用要求严格过滤和/或具有良好线性的LNA,其线性特性以三阶截止点(IP3)表示。还有,许多如全球定位系统(GPS)接收器等无线应用,可利用低功率LNA增强在没有干扰或blocking信号时的弱信号。

  考虑用于LNA设计的GaAs PHEMT有两种不同的器件形式:具有典型负阈值电压的D模式晶体管和具有正栅阈值电压的E模式晶体管。正栅阈值电压简化了电池供电系统中的偏压。尽管有可能采用一节电池对D模式器件供电,但它需要消耗额外的流入源电阻的DC功率以满足偏压要求。

  在LNA设计中,第一步是确定哪种类型器件提供最好的功能与性能的组合。下一步是选择器件的大小尺寸。器件尺寸将影响LNA的带宽、DC功耗、噪声值和非线性性能。对于一阶效应,器件尺寸不会影响增益和噪声值。然而,随着器件变得更小,匹配电路和相互联接的电阻损耗相对于器件阻抗而增加,大大增加了噪声值。

  器件尺寸的选择在MMIC LNA设计中是关键的一步。漏偏电流对噪声值的影响甚至比漏偏电压的影响更大。此外,漏偏还影响放大器增益。没有足够大的电流,增益会很低。一般来说,LNA对于漏饱和电流(IDSS)偏置15%~20%,作为增益与噪声的折衷。IDSS与器件尺寸成比例,所以较大器件将比较小器件消耗更大功率。降低DC功耗的一个途径是在维持15%~20%的IDSS偏置的同时减小器件的尺寸。

  

 

  降低漏电压将降低DC功耗,但器件的漏电压必须足够高以使其工作于饱和区并能够放大。除了随器件尺寸缩小噪声值增大和增益减小外,使用过小的器件还有其他缺点。包括非线性效应和由于IP3表现不佳造成的对工作带宽内干扰信号的易感性。最适合匹配50欧姆系统的器件尺寸也有一定范围。尺寸比这一优选范围小或大都趋于减少带宽,也许在窄带应用中还不太考虑,但在中等带宽应用中的确很重要。所以,尽可能缩小器件尺寸以降低功耗的直觉倾向,由于其他性能问题而有所缓和。这样,设计的功耗目标确定为毫瓦级。

  一旦选定了器件尺寸、偏置电流和偏置电压,下一步是设计LNA的匹配电路。对于一般器件通常提供有非线性和线性器件模型或S参数,但它们都针特定器件尺寸,如300μm进行了优化。器件尺寸增大和缩小,误差都会随之增大,虽然我们还不清楚由于器件尺寸增大和缩小而增大的误差有多大。反复设计流程被用于开发LNA以及电路布局,并且一直要进行各种检查。最后,在将设计发出制造之前,还要进行布局设计规则检查(DRC)。

  图1和图2分别显示了近乎相同的D模式和E模式LNA的布局。因为除掺杂物不同外,两种器件的GaAs制造工艺相同,只是要求匹配电路有一点点不同,以在E模式设计上优化D模式设计。虽然两种设计均针对一个偏置点进行了优化,还是要在各种电压和电流范围进行测试,以确定性能能力和DC功耗限制。

  

 

  虽然两种LNA在布局上几乎一样,仿真显示在同样的DC功耗下,E模式PHEMT有更好的性能。基于计算机仿真,E模式设计比D模式PHEMT设计在1-dB压缩(P1dB)有更好的增益、噪声值和输出功率。表1对比了不同DC偏置点上的两种LNA性能。

  

从仿真可以看出,对于同样DC功耗E模式LNA的增益通常比D模式LNA高2dB。同样,E模式器件的噪声值通常优于D模式器件0.3dB。虽然E模式器件在1-dB压缩时提供更大的输出功率,在更高功率水平上其DC功耗增大,使这种比较显失公充。对于两种LNA的输入和输出阻抗匹配基本相同。

  测量结果将显示在低功LNA设计中E模式器件性能是否优于D模式器件。为了比较结果,注意对于一块晶片样品,MMIC工艺变化可能会使两种LNA的结果有偏差。仿真基于统计上的一般器件。在PHEMT有源层(即阈值)掺杂情况变化,是可能引起两种器件性能明显变化的主要原因。所幸地,两种LNA设计中所有匹配电路和无源器件变化——微带线迹、电感和电阻都是一样的以进行比较。

  在可比DC功耗水平上,基于E模式器件的LNA比基于D模式器件的LNA具有更大的增益和更好的噪声值。测量包括1-dB压缩(P1dB)的输出功率、噪声值(NF)、增益(S21)和阻抗匹配(S11, S22),结果显示于表2。

  

 

  带有Cascade Microtech公司晶片探测系统的Agilent Technologies公司的HP 8510矢量网络分析仪被用于测量MMID裸片。对于两种设计,均测量了1~3V电压范围内的S参数。采用Sonnet Software公司输入和输出匹配电路软件进行的电磁(EM)仿真,与原来采用Agilent Technologies公司Advanced Design System(ADS)进行仿真相比,频率偏移稍高。实际设计的频率偏移比ADS或Sonnet的预计都高得多,这可能是由于匹配电路建模误差、PHEMT器件建模误差,或由于晶片工艺的正常变化而造成。

  

 

  4x12.5μm(50μm) PHEMT是由6x50μm(300μm) PHEMT的非线性模型按比例缩放。模型按比例缩放会产生误差。较小的器件具有更高的品质系数(Q),使其更难以匹配,并且更容易由于建模或器件的变化而出现频率偏移。对一些实际的4x12.5μm D模式和E模式器件进行测量并重新仿真NLA,是确定由于PHEMT模型变化产生多大偏移的一个很好的途径。不幸的是,唯一一个可在晶片制造中测量的PHEMT为标准6x50μm器件。图3显示了采用ADS微带产品对D模式LNA进行的ADS仿真,以及采用Sonnet EM仿真的匹配电路和测量所得增益。增益比E模式LNA高大约3dB(图4)。

  

 

  实际器件与预计相比,噪声值表现也在频率上有更高的偏移。对线缆损耗进行修正后,测得的噪声值比预计的高1dB左右。E模式器件表现的噪声值(及增益)出优于D模式器件。图5显示了采用噪声分析仪测得的D模式和E模式LNA的增益和噪声值。

  

 

  对两种器件采用信号发生器和频谱分析仪测量输出功率压缩。由于放大器比仿真在频率上有更大的偏移,原来在8.4GHz的预测值与在8.9GHz的实测值相当。图6显示了实测和仿真D模式LNA输出功率作为输入功率以及增益的函数。图7显示了E模式LNA的输出功率和增益测量。两种器件在都倾向于比仿真预测在更低输出功率上压缩。这对于在同样晶片上运行的其他设计很典型,它可能是由于正常工艺变化或建模误差造成的。

  总之,D模式和E模式LNA有显示了超低DC功耗水平的优良性能。在漏电流(IDS)为2mA时,在1.0、1.5、2.0和3.0V分对的具有良好噪声性能和增益的两种设计测量其S参数。当然,输出功率在较低电压和DC功耗方面更受局限。测量2mA偏置电流3V时输出功率以进行比较。正如预计的,平均而言E模式PHEMT器件比D模式器件的增益高2~3dB,噪声值更优0.33dB。E模式器件的正栅偏压使其更容易被集成于电池供电的低功率器件中。相反,D模式器件需要负栅源电压(VGS),它要求额外的负电源或使用源电阻和更高的漏电压,以将设计转换为单一的正电源。

  

 

  概括而言,TriQuint Semiconductor公司作为测试电路制造了两种类似的LNA设计,以及2005 Johns Hopkins University(JHU) MMIC Design Course(EE787)秋季课程其他学生的MMIC。两种设计以mW级的低功耗,展示了良好的增益(8~12dB)和良好的噪声值(3~3.5dB),对于低功率LNA,E模式器件展示了好得多的增益和噪声值。

  

关键字:GaAs  PHEMT  MMIC  LNA

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0211/article_14175.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
GaAs
PHEMT
MMIC
LNA

小广播

独家专题更多

TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved