高侧电流传感器输出周期

2012-01-30 11:59:08来源: 互联网
equire accurate monitoring of load current, charger current, or both. In non-portable applications high-side current monitoring serves as a power-supply watchdog that can flag a failure in downstream devices. It can also eliminate hazardous conditions by preventing power-supply overloads. Further, high-side current monitoring of motor/servo currents can produce useful feedback in a control application.

What's needed in these applications is a device that converts high-side current directly to a digital signal (Figure 1). IC1 is a low-cost, high-side current-sense amplifier that converts high-side current to a proportional ground-referenced voltage. Its two internal comparators (latching and non-latching) implement a voltage-to-pulse converter that produces a pulse-width output proportional to the measured current.


Figure 1. The duration of a negative-going pulse at COUT1 (pin 8) is proportional to the current flowing through Rsense.

IC1's OUT pin charges C1 via R1. When the C1 voltage reaches 0.6V, comparator 1 latches in the high-impedance state. The time required to charge C1 to 0.6V is proportional to the current being measured. Comparator 2 in conjunction with the RESET pin initiates the conversion and removes the pre-charge on C1.

Conversion is controlled by the RESET and CIN2 pins, tied together and connected to a TTL-compatible MCU output (CTRL). Normally, CTRL is high. The MCU starts a conversion by pulsing CTRL low, which discharges C1 and clears the latch on comparator 1 (COUT1 goes low). The MCU now measures time from the CTRL output transition to the low-to-high transition at COUT1 (Figure 2). (The period begins at the low-to-high transition of CTRL and ends at the low-to-high transition of COUT1.)


Figure 2. These waveforms illustrate operation of the Figure 1 circuit.

In response to the current levels of interest, RC is selected to create pulse durations in the tens of milliseconds. As a result, the OUT settling time (20µsec) and the comparator propogation delays (4µsec) have negligible effects on the measurement accuracy. To derive an expression for the output pulse width, start with the relationship for an RC-charging circuit:

Vthresh = Out(1 - ε-Tpulse/R1C1)

For "Out" (voltage at the Out terminal in Figure 1), substitute the expression (Iload × Rsense × Av), and solve for Iload:

Iload = Vthresh/(Rsense × Av(1 - ε-Tpulse/R1C1)), where

Iload = measured current in amps 
Vthresh = comparator threshold = 0.6V 
Rsense = current-sense resistance in Ω
Av = gain of IC1 
Tpulse = time required to charge C1 to Vthresh (in seconds) 

For example, when selecting R1 = 1M, C1 = 0.1µF, Rsense = 0.075Ω, and Av = 20; this produces a Tpulse measurement of 0.022 seconds in response to a 2A current. Thus, given an MCU timer port, an external interrupt, or simply an available MCU input, IC1 and two external passive components implement high-side current-to-digital conversion without need for a discrete A/D converter.

A similar version of this article appeared in the March 7, 2002 issue of EDN magazine.

关键字:高侧  电流  传感器

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0130/article_13966.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
高侧
电流
传感器

小广播

独家专题更多

迎接创新的黄金时代 无创想,不奇迹
迎接创新的黄金时代 无创想,不奇迹
​TE工程师帮助将不可能变成可能,通过技术突破,使世界更加清洁、安全和美好。
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
TTI携TE传感器样片与你相见,一起传感未来
富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved