开关变压器:直流脉冲对铁芯的磁化

2012-01-29 16:52:00来源: 互联网
直流脉冲对铁芯的磁化过程类似电容器充、放电,不同之处在于当电流消失之后铁芯中存在剩磁。经过N个直流脉冲之后,磁通密度和磁场强度以及磁矫顽力三者之间会形成一个动态平衡点,使变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br能够达到相对稳定。具体分析请看文中图形。

  为了简单起见,我们把单激式变压器开关电源等效成如图2-1所示电路,其中我们把直流输入电压通过控制开关通、断的作用,看成是一序列直流脉冲电压,即单极性脉冲电压,直接给开关变压器供电。这里我们特别把变压器称为开关变压器,以表示图2-1所示电路与一般电源变压器电路在工作原理方面还有区别的。

  在一般的电源变压器电路中,当电源变压器两端的输入电压为0时,表示输入端是短路的,因为电源内阻可以看作为0;而在开关变压器电路中,当开关变压器两端的输入电压为0时,表示输入端是开路的,因为电源内阻可以看作为无限大。

  

 

  在图2-1中,当一组序列号为1、2、3、…的直流脉冲电压分别加到开关变压器初级线圈a、b两端时,在开关变压器的初级线圈中就会有励磁电流流过,同时,在开关变压器的铁芯中就会产生磁场,在磁场强度为H的磁场作用下又会产生磁通密度为B的磁力线通量,简称磁通,用“”表示。

  

 

  在变压器铁芯中,磁通密度B或磁通受磁场强度H的作用而发生变化的过程,称为磁化过程;因此,用来描述磁通密度B与磁场强度H之间对应变化的关系曲线,人们都把它称为磁化曲线。图2-2是单激式开关变压器铁芯被磁化时,磁通密度B与磁场强度H之间对应变化的关系曲线图。

  顺便指出,在分析变压器铁芯的磁化过程中,经常使用磁通密度和磁感应强度这两个名称,这两个名称在本质上没区别,互相可以通用,不同场合使用不同名称,只是为了使用方便。

如果开关变压器的铁芯在这之前从来没有被任何磁场磁化过,并且开关变压器的伏秒容量足够大,那么,当第一个直流脉冲电压加到变压器初级线圈a、b两端时,在变压器初级线圈中将有励磁电流流过,并在变压器铁芯中产生磁场。

  在磁场强度H的作用下,变压器铁芯中的磁感应强度B将会按图2-2中0-1磁化曲线上升;当第一个直流脉冲电压将要结束时,磁场强度达到第一个最大值Hm1,同时磁感应强度将会被磁场强度磁化到第一个最大值Bm1;由此产生一个磁感应强度增量ΔB,ΔB=Bm1-0。磁感应强度增加,表示流过变压器初级线圈中的励磁电流产生的磁场在对变压器铁芯进行充磁。

  当序列脉冲电压加到开关变压器初级线圈a、b两端时,在变压器铁芯中会产生的磁场,这磁场完全是由流过变压器初级线圈的励磁电流产生的,流过变压器初级线圈的励磁电流为:

  

 

  (2-8)式中,为流过变压器初级线圈的励磁电流,E为加到变压器初级线圈两端的电压,L1为变压器初级线圈的电感量,t为时间,(0)为初始电流,即t=0时流过变压器初级线圈的励磁电流。

  如果脉冲序列的占空系数(占空比)满足磁化电流在后一个脉冲进入前下降为零,即开关电源工作于电流临界连续或不连续状态。

  当第一个直流脉冲结束以后,由于开关变压器初级线圈开路,虽然流过变压器初级线圈中的励磁电流下降到零,但磁场强度H不会马上下降到零;此时,变压器的初、次级线圈会同时产生反电动势,由于反电动势的作用,在变压器的初、次级线圈回路中都会有电流流过,这种回路电流属于感应电流,或称感生电流。

  当第一个直流脉冲结束时,如果开关变压器初级线圈不开路,反电动势会对输入电压进行反充电;如果开关变压器初级线圈是开路的,反电动势会对初级线圈中的分布电容进行充放电,从而会在初级线圈内部产生高频振荡。

  由反电动势产生的感应电流会在变压器铁芯中产生反向磁场,使变压器铁芯退磁,磁场强度H开始由第一最大值Hm1逐步下降到0;但变压器铁芯中的磁通密度B并不是按充磁时的0-1磁化曲线原路返回,跟随磁场强度下降到零,而是按另一条新的磁化曲线1-2返回到2点;即:第一个剩余磁通密度Br1处。因此,人们都习惯地把磁通密度位于2点的值,称为剩余磁通密度,或简称“剩磁”。变压器铁芯有剩磁说明变压器铁芯有记忆特性,这是铁磁材料的基本特性。

  磁场强度H下降到零,但变压器铁芯中的磁通密度不能跟随磁场强度下降到零,而只能下降到某个磁通密度剩余值,这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示。变压器铁芯具有磁矫顽力,这是铁磁材料或磁性材料最基本的性质。

  同理,当第二个直流脉冲加到变压器初级线圈a、b两端时,变压器铁芯中的磁通密度B将按图2-2中新的磁化曲线2-3上升,磁通密度被磁场强度磁化到第二个最大值Bm2,使磁通密度产生一个增量ΔB,ΔB=Bm2-Br1。

  第二个直流脉冲结束以后,流过变压器初级线圈中的励磁电流下降到零,变压器初、次级线圈产生的反电动势,又会使磁通密度按另一条新的退磁化曲线3-4返回到第二个剩余磁通密度Br2处;当然,Br2同样也只是变压器铁芯被退磁时磁通密度变化过程中的又一个临时剩余值。

  其余依次类推,第3、4个直流脉冲电压同样也会让磁通密度增加一个增量ΔB,即:

  

 

  (2-9)式中,ΔB为磁通密度增量;只要作用于开关变压器线圈上的脉冲电压的幅度U和脉冲宽度τ不变,则变压器铁芯片的磁化过程就会在磁通密度增量为常数(?B=常数)的条件下进行。

  但在直流脉冲的幅度和宽度不变的情况下,磁通密度的增量ΔB不改变,并不意味着磁场强度的增量可以保证不变,这是磁强度度与磁场强度之间的一个重要区别。

  经过n个直流脉冲电压之后,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br才能基本稳定在某个数值之上,即:脉冲序列的作用达到稳定状态后,磁化过程将沿原始曲线上某一固定局部磁滞回线n点重复;这时剩余磁通密度为Brn(Brn=Br),磁通密度变化无论磁场强度增长或降低,其ΔB值基本不变。

  显然,局部磁滞回线固定于什么位置,对某种材料来说只取决于?B值的大小。如果?B足够大,则局部磁滞回线的最低点位于最大局部磁滞回线的剩余磁通密度点Br点处。此时Br对应每个输入直流脉冲的起点,Bm对应每个直流脉冲的终点。

  磁通密度达到最大值Bm后不再继续增加是可以理解的,因为,磁通密度和磁场强度既可以是势能也可以是位能,两者可以互相转换,它们与电容充放电的过程是很相似的。例如:当电源电压对电容充电时,电容两端的电压会上升;当电源断开的时候,电容就会对负载放电,其两端电压就会下降;当电容充电的电荷与放电的电荷完全相等的时候,电容两端电压纹波就会稳定在某个数值之上。

  用?H表示磁场强度增量,它在固定局部磁滞回线上磁通密度增量?B相对应,即它们之间可用下面关系式表示:

  

 

  (2-10)式称为磁场强度增量?H与磁通密度增量?B的脉冲静态特性关系。在直流状态条件下,(2-10)式不成立。

  磁场强度增量?H和磁通密度增量?B的对应关系还可以用下式表示:

  

 

  本上都是固定的,并且是单极性脉冲,其磁滞回线的面积相对来说很小,因此,铁芯的脉冲导磁率几乎可以看成是一个常数;而开关变压器输入脉冲电压的幅度以及宽度都不是固定的,其磁滞回线的面积相对来说变化比较大,铁芯导磁率的变化范围也很大,特别是双激式开关变压器,因此,只能用平均导磁率的概念来描述。

励磁电流或磁场强度对变压器铁芯进行磁化时也具有类似电容器充、放电的特点:当变压器初级线圈中的励磁电流产生的磁场强度对变压器铁芯进行磁化时,磁通密度就会增加,相当于对电容器充电;当变压器初级线圈中的励磁电流为零时,变压器初、次级线圈会产生反电动势,其感应产生的电流就会产生反向磁场对变压器铁芯进行退磁,使磁通密度下降,与充电电容器对负载放电的情况很类似。

  当变压器铁芯被磁化时产生的磁通密度增量与变压器铁芯被退磁时产生的磁通密度增量(负值)完全相等的时候,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br就会分别稳定在某个数值之上。

  此时,我们可称,变压器铁芯磁化过程已经进入了基本稳定状态,即:每输入一个直流脉冲电压,变压器铁芯中的磁通密度都会产生一个磁通密度增量ΔB,ΔB=Bm-Br,当直流脉冲结束以后,磁通密度又从最大值Bm回到剩余磁通密度Br的位置。这样,我们把磁化曲线所对应的Br值称为剩磁(或剩余磁通密度),而磁化曲线所对应的Bm值称为磁通密度的最大值。

不过,变压器铁芯磁化曲线中最大磁通密度Bm以及剩余磁通密度Br的值不是一成不变的,它们会随着输入脉冲电压的幅度以及脉冲宽度的改变而改变;只有在输入脉冲电压的幅度以及脉冲宽度基本保持不变的情况下,变压器铁芯磁化曲线中的最大磁通密度Bm以及

[1] [2]

关键字:开关  变压器  直流脉冲  磁化

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2012/0129/article_13931.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
开关
变压器
直流脉冲
磁化

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved