整合式CFE防护提高充电系统层级安全性

2011-12-14 14:42:04来源: 互联网
本文将探讨锂电池安全性、充电电池设计、安全监控,以及充电系统安全性等主要系统设计考量。

  电池充电器IC角色关键

  图1显示一般的电池充电系统,该系统输入可以是交流电(AC)墙式转接器供应的直流电(DC)电源,或通用序列汇流排(USB)介面供应的DC电源。一般的电池充电系统包括充电前端(CFE)、电池充电器及电池组。CFE防护积体电路(IC)整合输入过压、过流及电池过压等防护机制,能够提高电池供电系统的安全性。电池充电器IC可调节电池充电电压及电流,并监控电池温度,以延长电池使用寿命,并提高安全性。了解锂电池特性,对于设计更安全的充电系统而言相当重要。

  

一般的电池充电系统

 

  图1 一般的电池充电系统

  锂电池安全性不可忽视

  由于锂电池采用活性极高的材料,因此必须注意运作温度过高会加速电池衰减,导致热失控,甚至使锂电池爆裂的问题。如果电池在高电流下过度充电或发生短路,就会出现快速升温的现象。

  锂电池过度充电时,活性金属锂就会沉积在正极上,这种材料会大幅提高火灾发生机率,因为只要接触电解液和负极材料就会爆裂。例如,锂/碳嵌入化合物遇水会发生化学反应,而反应产生的高温可点燃释放的氢气。

  对于4.3伏特(V)电池电压而言,氧化锂钴(LiCoO2)等负极材料在温度超过热失控临界值175℃时,就会与电解液发生反应(图2)。锂电池采用聚烯烃(Polyolefin)等多微孔薄膜(Micro-porous Film)将正负电极加以电隔离。这些电极可达到绝佳的机械属性与化学稳定性,且价格合理。聚烯烃的熔点较低,介于135~165℃之间,可作为温度保险丝。随着温度接近聚合物的熔点,便不再具有渗透性(Porosity),在锂离子不再于电极之间流动时关闭电池。

  

 

  图2 电池热失控

  此外,正向温度系数(PTC)装置和安全出口(Vent)能提供额外防护,一般而言,负极终端外壳通常采用镀镍钢铁。外壳封闭后,金属粒子会污染电池内部。这些粒子会随着时间进入分离器,导致电池正负极两侧之间的绝缘层衰减,这会造成正负极之间的微小短路,使电子自由流动,最终导致电池故障。这种故障通常只会导致电池电量耗尽,无法正常运作。在极罕见情况下,电池会出现过热、融化、起火甚至爆裂等现象。

  安全电池充电器设计三部曲

  

 

  图3显示常用的锂电池充电配置,锂电池充电包括三个阶段,首先是预先充电,接着是快速充电稳定电流(CC),最后是稳定电压(CV)。在预先充电中,电池以低速率充电。电池电压低于3.0伏特时,充电速率通常是快速充电速率的十分之一。钝化层在深度放电状态下,长期沉积后可能溶解,便可逐渐恢复。此外,过度放电的阳极短路电池上出现部分铜分解时,预先充电可防止在1℃充电速率(可在1个小时内使电池完全放电的电流)下出现过热状况。

  图3 锂电池充电配置

  预先充电安全计时器,可避免电量耗尽的电池长时间充电。一般而言,电池电压达到3.0伏特,充电器就会进入CC阶段。快速充电电流通常限定在0.5~1℃之间,以避免过热导致电池加速衰减。速率必须慎选,确保电池温度不超过45℃,以快速充电速率进行电池充电,直至电压达到调节限度(对于LiCoO2的阴极通常是每颗电池4.2伏特)为止。充电器开始调节电池电压并进入CV阶段,此时充电电流会等比下降至预先定义的终止程度,结束电池充电。

  对于电池使用寿命及安全性而言,电池充电电压的准确性相当重要。更高的电池充电电压可提高充电容量,但是会缩短电池使用寿命,如图4所示。对于±2.5%容差的电池充电电压而言,充电电压可能会达到4.3伏特,这会导致热失控及安全性问题。为避免电池高温充电,并提高安全性,充电器IC必须监控电池组的温度。只有在电池温度维持在安全范围内(0~45℃)时,电池才能充电,电池组通常会利用电热调节器让温度达到安全范围。此外,通常须要快速充电安全计时器,避免电量耗尽的电池长时间充电。一旦经过安全时间,即便电池未达到充电终止电流状态,电池充电器也必须结束充电。

  

 

  图4 LiCoO2阴极锂电池的充电电压与使用寿命之间的关系

  使用高度整合式线性电池充电器为单颗锂电池充电相当普遍,因为这类充电器符合可携式装置的设计简化、低成本及小体积尺寸等需求。其中的设计难题,在于使电池充电器维持在安全温度运作范围内,同时尽可能降低产生的热量。最新开发的电池充电器具备散热调节功能,能够达到最高的充电速率,并且尽可能缩短充电时间,同时解决散热问题。

  

  

 

  充电器从预先充电转换为快速充电模式,且达最高功耗时,输入电压与电池电压间的差异便相当大。例如,若使用5伏特转接器为1,200毫安培小时(mAh)锂电池充电,当充电电流为1安培(A)且电池电压为3.2伏特时,最大功耗即为1.8瓦(W)。对于热阻抗为47℃/瓦的3毫米×3毫米四方形平面无接脚封装(QFN),功耗会造成温度升高85℃。接点温度会超过允许的操作温度上限(45℃环境温度下为125℃)。确保良好的散热设计在开始充电时,将接点温度维持在安全范围内,是一项相当困难的工作。在充电过程中,随着电池电压升高,功耗也会逐渐下降。

  散热调节回路可避免充电器过热

  如何确保充电器维持在安全温度运作范围内,并提升散热设计是一大挑战,较进阶的电池充电器采用散热调节回路避免充电器过热。内部晶片温度达到预先定义的温度临界值时,如110℃,后续的IC温度提高,都会减少充电电流,如此即可限制功耗,提升充电器的过热防护。导致IC接点温度达散热调节程度的最大功耗,取决于印刷电路板(PCB)配置、散热通孔数及环境温度(图5)。

  

 

  图5 电池充电器的一般应用电路

  散热回路运作时,充电电流会达到充电终止临界值,这会导致错误终止充电,因为散热调节功能通常是在快速充电的早期阶段启动。为避免错误终止充电,只要散热调节回路处于运作状态,就不会使电池充电终止。此外,有效充电电流也会减少,使电池充电时间增加,因此,固定式安全计时器可能导致充电安全计时器错误终止。先进的电池充电器采用可自动减速时脉频率的动态安全计时器,动态计时器控制电路可有效延长安全计时器持续时间,大幅降低安全计时器因散热调节引起的故障机率。

  加入第二层过压防护提高电池安全性

  如何才能提高系统层级充电的安全性和可靠性呢?一般可采用许多不同的转接器为可携式装置供电,但不同的制造商往往采用不同的电流规格,使得可携式装置的系统设计人员必须克服技术难题,在使用不同转接器时满足各种安全要求,其中的困难包括输入过压、输入过流、电池过压及反向输入电压,这些都会造成系统损坏。

  转接器热插拔、转接器错误、暂态或稳定状态过压等问题,都可能导致输入过压。当转接器热插入时,缆线电感与系统输入解耦合电容之间的谐振会导致过压。对于独立式充电器而言,输入过流可能不会造成问题,因为稳定电流模式会限制供应给输出或电池的电流量。不过,对于系统输入有直接电源路径的先进电池充电器而言,在输入过多电流时通常没有任何防护。

  长期以来,设计人员对于转接器在电流限制模式下运作有些顾虑,希望可程式输入电流限制电路能确保转接器不进入此模式。锂离子/锂聚合物电池组在高温下过度充电,可能会发生危险的燃烧状况。过度充电的迹象就是电池电压升高。愈来愈多制造商都在寻找可确保电池组安全性与规范的安全措施,若要提高电池安全性,可加入第二层过压防护移除输入电源,在侦测电池过压时关闭CFE功率金属氧化物半导体场效电晶体(MOSFET)即可。

  图6显示一般系统层级CFE电路。高电压防护CFE可将高输入电压与低压充电器及系统相隔离,以免系统出现高电压。整合所有安全功能,包括输入电流限制与防护、输入电压防护及电池过压防护。无论出现何种故障状况,CFE都会关闭MOSFET进行适当防护,以提升整体系统安全性。

  

一般的系统层级CFE电路

 

  图6 一般的系统层级CFE电路

  依据电池特性、充电器IC设计,以及系统层级安全考量,对设计更安全的电池充电系统相当重要,运用CFE、电池充电器IC及电池组的安全防护机制,充电系统可发挥更稳定的安全效能。完全整合式CFE可提高充电系统层级安全性,而更安全的电池充电器设计可延长电池使用寿命,并避免过度充电的危险。

关键字:整合式  CFE防护  充电系统

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/1214/article_13495.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
整合式
CFE防护
充电系统

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved