旋转目标干涉逆合成孔径三维成像技术

2011-11-24 17:10:51来源: 互联网 关键字:旋转目标  干涉  逆合成  三维成像
旋转目标干涉逆合成孔径三维成像技术

本文根据旋转目标微波成像原理,导出了采用干涉逆合成孔径(INISAR)处理获取第三维高程信息的旋转目标INISAR三维成像技术.这种技术通过鉴别由俯仰角微小差异的两副天线分别获取的两幅相位相干的二维图像对应散射中心的相位变化来确定散射中心在竖直维的位置;散射中心的横坐标、纵坐标及幅度由一幅二维图像给出.模拟计算与飞机模型实验测量均得到满意结果.
  关键词:雷达目标;微波成像;测量

INISAR 3-D Imaging Technique for Rotating Targets

XIAO Zhi-he,DAI Chao-ming,CHAO Zeng-ming,XU Xiao-jian
(Beijing Institute of Environmental Features,Beijing 100854,China)

  Abstract:Based on the principle of microwave imaging of the rotating targets,an INISAR (ISAR Interferometry) 3-D imaging technique of rotating targets is described in this paper.The vertical position of scattering centers are given by comparing their phase difference of two phase coherent 2-D images which are obtained by using two antennas with a little change in pitch angle.The down-range and cross-range position and amplitude of scattering centers of the 3-D image are given by one 2-D image.The simulated and measured results are all satisfactory.
  Key words:radar targets;microwave imaging;measurement

一、引  言
  雷达目标二维成像的理论和测量技术已经取得了巨大的发展和广泛应用,并成为电磁散射实验室、目标特性及其控制研究、微波遥感等领域不可缺少的标志性技术.作为二维成像的推广,能获取复杂目标散射中心三维分布的三维成像技术,由于要求获取巨大数量的测量数据,从目前的试验手段而言可能需要几十个小时,实际难以实现.因此,完全意义上的三维成像一直未能在实验室中实现.如何采用新的可行的技术途径获得散射中心高程坐标是人们一直试图解决的问题.
  干涉图样可以用来捕捉目标表面相对参考平面的位移和变形,这在光学领域已有悠久历史.随着合成孔径雷达(SAR)在微波遥感领域的发展和应用,到九十年代初,人们提出并研究了干涉合成孔径雷达(INSAR)[1~4].INSAR法即通过测量在高度方向上位置有微小差别的两副天线的相位差或是多轨道(可以非同时)情况下测得的相位差,提取有关地形的第三维高程信息.
  旋转目标二维成像基于圆周孔径的ISAR成像,通过宽带脉冲压缩得到径向高分辨;通过圆周合成孔径得到横向高分辨.本文根据旋转目标微波成像原理,导出了采用干涉逆合成孔径(INISAR)处理获取第三维高程信息的INISAR三维成像技术.这种技术通过鉴别由俯仰角微小差异的两副天线所获取的相位相干的两幅二维图像对应散射中心的相位变化来确定散射中心在竖直维的位置,从而得到目标散射中心三维坐标.这种技术适用于在同一径向、横向分辨单元内只有一个强散射源的情况.

二、旋转目标二维成像原理
  图1为转台逆合成孔径成像的几何关系,其中X—轴为横向,Y—轴为径向.设目标散射中心空域分布为g(x,y),则相参雷达的接收数据(谱域)为:

图1 转台成像几何图

G(K,ψ)=∫∫g(x,y)ej2πK(ycosψ+xsinψ)dxdy (1)

式中:K=2/λ,为空间频率,ψ为雷达视线与Y轴(径向坐标)夹角.
  (ycosψ+xsinψ)为g(x,y)在雷达视线上的投影;G(k,ψ)和g(x,y)互为傅立叶变换关系.
  在有限的频带和有限的观察角范围内,G(K,ψ)的自变量取值形式如图2所示,为极坐标格栅数据.

图2 极坐标格栅数据

  根据式(1)得到目标二维散射中心分布的估计值(x,y)的滤波——逆投影算法:

 (2)

三、INISAR三维成像原理
  INSAR三维成像的几何关系见图3所示,其中,X—为横向;Y—为径向;Z—为竖向.设体目标散射中心的直角坐标为g(x,y,z),对应的球坐标为g′(ρ,φ,θ),坐标之间的关系为:

图3 三维成像的几何关系图

 (3)

并记g的方向矢量为:

g=(sinθcosφ,sinθsinφ,cosθ).

  设INISAR的两副接收天线分别为M1和M2,均指向目标坐标原点;其入射线均位于包含Z轴在内的入射内平面P内,P与XOY平面交线的方向角为φ1.设M1的方向矢量为

M1=(sinθ1cosφ1,sinθ1sinφ1,cosθ1) (4)

M2的方向矢量为:

M2=(sinθ2cosφ1,sinθ2sinφ1,cosθ2) (5)

则目标散射中心g在M1和M2上的投影分别为:

R1=ρg.M1=xsinθ1cosφ1+ysinθ1sinφ1+zcosθ1
R2=ρg.M2=xsinθ2cosφ1+ysinθ2sinφ1+zcosθ2

  设目标ISAR成像的旋转面为XOY平面,且M1在XOY平面上,M2与XOY平面有夹角Δθ,则得:θ1=90°,θ2=90°-Δθ.记ψ为M1(M2相同)与Y轴的夹角,则ψ=90°-φ1,ψ∈(ψ1,ψ2)为二维成像合成孔径角范围.则得:

R1=ycosψ+xsinψ (6)
R2=(ycosψ+xsinψ)cosΔθ+zsinΔθ≈ycosψ+xsinψ+zsinΔθ (7)

  则散射中心g在M1所得图像I1和M2所得图像I2上的程差为:

ΔR=R2-R1≈zsinΔθ (8)

  对应的传输相位为:

 (9)

  式中所示的传输相位将反映在图像I1和图像I2对应像素点相应散射中心的相位差上.因此通过鉴别图像I1和图像I2对应像素点相应散射中心的相位差,则由式(9)可以得到其竖向坐标为:

z=(λ.Θ)/(4π.sinΔθ) (10)

  为避免相位模糊,Θ的取值范围应为-π<Θ<π,设|z|<z0,则有

Δθ(rad)<λ/(4z0) 或
Δθ(deg)<14λ/z0=4.2/(f0z0) (11)

  式中f0单位:GHz;z0单位:m.
  在INISAR三维成像中,目标散射中心分布的横向(x)坐标、径向(y)坐标及散射强度由天线M1所得二维成像结果给出,散射中心的竖向(z)坐标由式(10)给出.
  由式(10)可知,散射中心竖向坐标的误差主要由角度值Δθ和相位差值Θ决定.其中Δθ是一固定值,可以通过一定的技术手段得到较准确的计量.由Δθ引起的误差为:

 (12)

  设f0=10GHz,z0=1m,则由式(12)得,Δθ<0.42°.取Δθ=0.4°.设Δθ的误差为0.01°,则Δzθ=-2.5%,z的绝对误差小于2.5cm.可见由Δθ引起的误差为恒定相对误差,随z坐标的增大,其绝对误差将增大.因此,在满足式(11)的条件下Δθ的值应尽量取大些.当频率高时,由于Δθ的值取得小,Δzθ会增大.
  散射中心竖向坐标的另一主要误差来源是相位量Θ的测量误差,其相对误差为:

 (13)

可见,由相位量Θ的测量误差引起的散射中心竖向坐标的相对误差与其竖向坐标的量值成反比,但有固定的最大绝对误差.高精度相干测量雷达的相位测量误差小于2°,即ΔΘ=2°,设f0=10GHz,Δθ=0.4°,z0=1.0m,则Δzθ=1.2%;绝对误差小于1.2cm.

四、模拟计算
  为便于计算,以金属球组合目标为例进行模拟计算.金属球后向散射用级数解求得.球心不在坐标中心时,按径向距离加入传输相位.
  假设5个球的组合目标,球的半径及其分布位置设定见下表.先分别计算每一金属球的级数解,并根据其球心位置调整其相位;将5个球的散射贡献矢量相加,逐一生成极坐标格栅的雷达模拟数据.设成像频带范围8~12GHz;合成孔径角范围24°;两天线俯仰角差Δθ=0.4°.分别计算θ=90°和θ=90°-0.4°时的两幅二维成像.根据式(10)计算得到每一像素的竖向坐标,画成立体图.如图4所示.强散射源的三维位置(镜面)及幅度见表1.从表中可见:横向、径向位置误差小于1cm,竖向位置误差小于2cm,均在一个分辨力范围内.


图4 五个球的组合目标三维成像模拟计算结果

表1

球半径(m)及RCS(dBm2) 球心位置预设(m) 球镜面位置预设(m) 球镜面位置测量值(m)
序号 半径 预估RCS 测量RCS 横向 径向 竖向 横向 径向 竖向 横向 径向 竖向
1 0.05 -21.05 -21.3 0.80 0.80 0.5 0.80 0.75 0.5 0.80 0.76 0.51
2 0.04 -22.22 -23.0 0.40 0.40 0.0 0.40 0.36 0.0 0.40 0.36 0.00
3 0.03 -25.41 -26.0 0.00 0.00 -0.2 0.00 -0.03 -0.2 0.00 -0.02 -0.20
4 0.02 -30.93 -29.3 -0.40 -0.40 -0.4 -0.40 -0.42 -0.4 -0.40 -0.42 -0.40
5 0.01 -33.43 -34.4 -0.80 -0.80 -0.6 -0.80 -0.81 -0.6 -0.80 -0.80 -0.62
五、微波暗室实验测试
  根据前述三维成像测量技术,用飞机模型进行了实验测量.测试中心频率9.25GHz,带宽1.8GHz,水平极化,俯仰角差Δθ=-0.4°.测试结果见图5所示.如图中所示,P2为飞机的面天线;P1为压气机,距天线1.09m;P3、P5为进气口,相距0.15m,距天线0.435m;P4为座椅,距天线0.41m,比飞机轴心高约0.1m;P6为座舱前沿,距天线约0.29m;P7、P8为导弹架,相距0.61m,距天线0.86m,比飞机轴心低0.17m.


图5 某飞机缩比模型(头部方位)三维成像测量结果

  在测量中,飞机轴心在竖向轴的位置约为-4cm.分析图5所示结果,飞机模型散射中心的相对位置关系吻合良好,误差在一个分辨单元之内.表明了旋转目标干涉逆合成孔径三维成像技术的可行性.

六、结  论
  本文提出了一种简单易行的三维成像测量技术,该技术能得到目标强散射源散射中心的三维坐标.模拟计算与飞机缩比模型暗室实验测量表明该技术切实可行.三维成像测试技术的建立为目标散射中心诊断、多散射源建模与应用等提供了新的技术手段.

关键字:旋转目标  干涉  逆合成  三维成像

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/1124/article_13202.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。

上一篇:电子仪器的测量误差
下一篇:高频雷达抑制冲击干扰的研究与实验

关注eeworld公众号 快捷获取更多信息
关注eeworld公众号
快捷获取更多信息
关注eeworld服务号 享受更多官方福利
关注eeworld服务号
享受更多官方福利
推荐阅读
全部
旋转目标
干涉
逆合成
三维成像

小广播

独家专题更多

东芝在线展会——芯科技智社会创未来
东芝在线展会——芯科技智社会创未来
2017东芝PCIM在线展会
2017东芝PCIM在线展会
TI车载信息娱乐系统的音视频解决方案
TI车载信息娱乐系统的音视频解决方案
汇总了TI汽车信息娱乐系统方案、优质音频解决方案、汽车娱乐系统和仪表盘参考设计相关的文档、视频等资源
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2017 EEWORLD.com.cn, Inc. All rights reserved