模拟电路基板导线的设计

2011-11-20 13:30:30来源: 互联网
1、OP增幅器构成的全波形整流电路patterning

  图1的全波形整流电路,经常因正端(plusside)与负端(minus)gain的未整合,导致波形不均衡,所以决定gain值的电阻使用误差为±1%的金属皮膜电阻。本电路可以使IC1b作差动动作,因此能够减缓高频时波形不均衡现象。虽然OP增幅器采用LF412,不过可以根据设计需求,改用与OP增幅器脚架相容的LM358

  

利用OP差动增幅器作全波整流的电路

 

  图1利用OP差动增幅器作全波整流的电路

  IC1的1、2号脚架至5、6号脚架路径(route)是本电路基板主要设计重点,如图2所示如果导线绕过IC的外侧,路径会变长所以采取IC下方布线设计,正、负电源的图案导线宽度完全相同,信号则沿着箭头方向流动,二极管(diode)等整流电路则整合在基板左侧,电源导线加粗的同时接地采取fullground设计,如此一来双面电路基板就可以满足以上所有的要求。

  

利用OP差动增幅器作全波整流的电路基板图案

 

  图2利用OP差动增幅器作全波整流的电路基板图案

  2、光学耦合器的基本周边导线

  接着介绍封装光学耦合器(photocoupler)的电路基板分离图案设计技巧。光学耦合器主要功能是将board或是设备之间绝缘,主要原因是为了保障各组件保证的绝缘耐压特性,因此电路基板出现所谓的分离图案设计。图3的电路12V的输入单元与5V的输出单元就是采用分离图案设计,它使用四个编号为的PS2801-4光学耦合器。

  

使用photocoupler的电压转换电路

 

  图3使用photocoupler的电压转换电路

  如图4所示为确保1次端(发光侧)与2次端(收光侧)的沿面距离,所以设计上分成表层图案与内层图案,内层图案若是fullpattern时,与一般fullpattern一样需作除料设计。所谓沿面距离是线导体之间的指导,沿着绝缘物通行时最短距离而言,有关耐压与沿面距离,UL、VDE等各国的安全规范都有严谨的规定与说明。

  (1)pattern的间隔过窄设计例(b)pattern的间隔适当设计例

  

 

  图4photocoupler正下方的1次端与2次端图案必需确实分离

I/O点数很多而且使用复数个光学耦合器的场合,必需将散热问题一并列入考虑。图5是根据以上需求,兼具散热效果的pattern设计范例,由图可知1次端与2次端的接地共通时,利用fullpattern连接可以提高散热效果;内层有接地时可以在fullpattern设置数个via与内层接地连接。如上所述根据1次端与2次端的电流值与散热要求,最后才能决定电阻的定额与pattern宽度

  

兼具散热效果的pattern设计

 

  图5兼具散热效果的pattern设计

  3、100V以上商用电源线的图案

  图6是已经绝缘可输出脉冲的商用交流zerocrosspoint电路。TLP626LED两者未点灯时,光学耦合器的光学晶体管(phototransistor)成为OFF,输出正极性的脉冲。

  

商用交流zerocrosspoint检测电路

 

  图6商用交流zerocrosspoint检测电路

  由于商用交流的输入线相当危险,因此设计电路基板图案时必需充分考虑绝缘与安全性。图7所示虽然R1单独一个电阻电气上动作完全相同,不过与商用交流的输入直接连接的图案变长,或是流入电阻的电压变高时,电阻的耐电压特性会出现问题,因此建议读者最好分成数个电阻。图8的输入电压变高时,R1电力损失会以电压的二次方增加,此时必需改佣可以封装更大阻抗的电路基板图案。

  

 

  图7以R1取代图17的R1-1R1-2

  

 

  图8加大图17的R1-1R1-2容许电力可支持大电压范围

   设计图9的电路基板图案,必需考虑下列事项:

  ①采用fullpattern设计,组件尽量紧凑封装。

  ②R1等发热组件附近设置低高度R1,同时尽量远离C1。

  ③R1设置复数个可以封装1W,2W,3W电力阻抗的land。

  图9电路基板图案最大缺点是封装2W,3W电阻时,会因为实际电阻封装情况,造成未使用的land太接近胴体部位;图10是设计变更后的电路基板图案,如此一来R1封装在任何位置,组件下方不会出现land

  

 

  图9商用交流zerocrosspoint检测电路基板图案图10设计变更后的基板图案.可发挥24位分辨率的A-Dconverter周边电路基板图案

  图11是由复数个24位A-Dconverter构成,具备电压测试精度与SN比最佳化,与直流甚至20kHz信号的多频道数据记录前置器(multichanneldatarecorderfrontend)电路图。本电路亦可应用在3频数据记录器,为达成目的因此将成为ADC的转换基准的参考(reference)电源REF3125IC(以下简称为REF)当作ADC与pair使用,虽然如此设计ADC频道之间的gain误差会增大,不过复数ADC使用共通同的REF,图案的设计自由度提高,而且容易获得理想的基板布线设计。

  

复数个24位A-Dconverter构成的多频数据记录器电路

 

  图11复数个24位A-Dconverter构成的多频数据记录器电路

  图12是从信号源一直到电源的过程中产生的接地电位差统计一览、上述电路为模拟/数字混载电路,因此接地会有模拟/数字电流流动,如果处理错误的话数字电路的return电流,会混入模拟接地变成噪讯源。

  

 

  图12接地电流的种类与接地电位差的统计一览

  此外各电路的电流是由电源的正极提供,再折返至供给元的负极,因此设计上利用此特性,设置return电流合流点与分歧,点使通行路径明确分隔。初段的模拟电路(前置增幅器)根据本身的电位基准点接受信号电压,信号源与该电位基准点若与接地的同电位时,正确信号电压会传递至前置增幅器。

图12是表示电流的合流与分歧电位差。此外ADC包含模拟/数字两种电路两者的接地之间电位若有动态变化的话,模拟单元会出现耦合(coupling)造成SN比恶化现象,所以图13的ADC直接连接在与地电位上完全相同位置。图24是充分反映以上构想的数据记录器电路基板图案,如图所示宽幅的接地图案在ADC与OP增幅器正下方通行,它除了达成低接地阻抗化之外,还兼具对IC芯片的遮蔽(shield)效果,尤其是电路内层或是背面设有可以传输脉冲信号的图案时,通常都可以获得极佳低接地阻抗与遮蔽效果。

  

充分反映图12的构想的数据记录器电路基板图案

 

  图13充分反映图12的构想的数据记录器电路基板图案

  图14是基板背面图案,图中的补充图A又称为remotesensing手法。虽然OP增幅器的输出部设置利用电容负载防止波动的电阻,不过只要插入包含该电阻与VrefP电位的复归loop,就能够正确将参考电压传至VrefP。补充图B则称为Kelvin连接手法,由于OPA2346的第2与第3脚架之间会产生参考(reference)基准电压,因此直接在VrefP至VrefN之间铺设电压传输线,如此就可以防止return电流波动产生电压误差

  

可以提供A-Dconverter良好参考电压的电路基板

 

  图14可以提供A-Dconverter良好参考电压的电路基板

关键字:模拟电路  基板导线

编辑:神话 引用地址:http://www.eeworld.com.cn/mndz/2011/1120/article_13136.html
本网站转载的所有的文章、图片、音频视频文件等资料的版权归版权所有人所有,本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如果本网所选内容的文章作者及编辑认为其作品不宜公开自由传播,或不应无偿使用,请及时通过电子邮件或电话通知我们,以迅速采取适当措施,避免给双方造成不必要的经济损失。
论坛活动 E手掌握
微信扫一扫加关注
论坛活动 E手掌握
芯片资讯 锐利解读
微信扫一扫加关注
芯片资讯 锐利解读
推荐阅读
全部
模拟电路
基板导线

小广播

独家专题更多

富士通铁电随机存储器FRAM主题展馆
富士通铁电随机存储器FRAM主题展馆
馆内包含了 纵览FRAM、独立FRAM存储器专区、FRAM内置LSI专区三大部分内容。 
走,跟Molex一起去看《中国电子消费品趋势》!
走,跟Molex一起去看《中国电子消费品趋势》!
 
带你走进LED王国——Microchip LED应用专题
带你走进LED王国——Microchip LED应用专题
 
电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2016 EEWORLD.com.cn, Inc. All rights reserved