Upgrade panel-meter range and

2011-11-14 10:52:16来源: 互联网 关键字:range

Figure 1. The range of this panel-meter circuit is doubled by scaling the input signal, and its precision is doubled by using more of the available bits.

A 7-segment display driver internal to the panel-meter IC drives a common-cathode LED display, using a multiplexing scheme to drive one digit at a time. Unfortunately the driver is optimized for driving 4½-digit displays. That means that the first (most significant) position can only show a "half digit" of +1 or -1 (Figure 2).

Figure 2. Seven-segment displays include half digits (left) and full "1" digits (right).

Signals via the SPI interface can switch all segments in the display on and off individually, except for those in the first digit. Segments B and C (which form "1") can only be switched on or off together. The same is true for segments A, F, and D (which form "+"). Segment G (which forms "-") is on when segments A, F, and D are off, and vice versa. To upgrade this display to 4¾ digits, you must ensure that the first digit position can show "1," "2," "3," or a blank (Figure 3). From the figure it is clear that segment F is never used, so you need only control six of the segments.

Figure 3. In the four possible states of a ¾-digit display, segment F is always off.

If the ½-digit display is replaced by a full "1-digit" display, and control lines for the F and G segments are swapped, all segments but F are lit when the "1" and "+" signs are activated (Figure 4). The E segment is not used in the ½-digit display, and if left connected is on by default. Adding switches in the form of low-cost NPN transistors enables a microcontroller to turn each segment on and off via a few GPIO pins, producing a display of blank, "1," "2," or "3." The complete circuit is shown in Figure 5.

Figure 4. To convert a ½-digit display to a full "1-digit" display, swap the control lines to the F and G segments.

Figure 5. Complete 4¾-digit panel-meter circuit.

The end of conversion (EOC\) signal connects to an external interrupt on the microcontroller. When a new value appears, the microcontroller reads it through the SPI port and multiplies it by 2. It then determines which segments to illuminate (switch on) by using the SPI port to set correct values in the display registers. External transistor switches are then set via the GPIO pins to create the desired character.

In front of the first digit you can use a rectangular LED as a minus sign, controlled by the signal of an unused decimal point. Any microcontroller with an external interrupt pin, an SPI interface, and enough GPIOs is acceptable for this application. The test setup includes aMAX1499 panel-driver IC on the display board, controlled by a low-power RISC microcontroller (MAXQ610) on its own evaluation board (Figure 6). Firmware is available for download.


编辑:神话 引用地址:

上一篇:LTC5583设计的双路6GHz RMS功率检测技术
下一篇:市場研究調查認定的 一項突破性數位設計分析技

关注eeworld公众号 快捷获取更多信息
关注eeworld服务号 享受更多官方福利





电子工程世界版权所有 京ICP证060456号 京ICP备10001474号 电信业务审批[2006]字第258号函 京公海网安备110108001534 Copyright © 2005-2018, Inc. All rights reserved